You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

2.1 KiB

Hastic server Travis CI

Website | Twitter

Implementation of basic pattern recognition for anomaly detection.

Implementation of analytic unit for Hastic.

See also:

  • Hooks - notifications about events
  • REST - for developing your plugins
  • HasticPanel - Hastic plugin for Grafana

Build & run

Server needs Grafana's API key (http://<your_grafana_url>/org/apikeys) to query data from Grafana datasources. API key role needs only Viewer access.

You can install it on:

Linux

Environment variables

You can export following environment variables for hastic-server to use:

  • HASTIC_API_KEY - (required) API-key of your Grafana instance
  • HASTIC_PORT - (optional) port you want to run server on, default: 8000

Dependencies

You need in your system:

Intallation

pip3 install pandas seglearn scipy tsfresh

git clone https://github.com/hastic/hastic-server.git
cd ./hastic-server/server
npm install 
npm run build

Run

export HASTIC_API_KEY=<your_grafana_api_key>
export HASTIC_PORT=<port_you_want_to_run_server_on>

cd ./hastic-server/server
npm start

Docker

Example of running hastic-server in Docker:

Build

git clone https://github.com/hastic/hastic-server.git
cd hastic-server
docker build -t hastic-server .

Run

docker run -d --name hastic-server -p 80:8000 -e HASTIC_API_KEY=<your_grafana_api_key> hastic-server

Known bugs & issues

  • If you add labeled segments while learning - it fails
  • Dataset doesn't get updated after 1st learning
  • Currently only influxDB datasource is supported