You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.5 KiB
95 lines
3.5 KiB
from models import Model |
|
|
|
import utils |
|
import numpy as np |
|
import pandas as pd |
|
import scipy.signal |
|
from scipy.fftpack import fft |
|
from scipy.signal import argrelextrema |
|
import math |
|
from scipy.stats import gaussian_kde |
|
from scipy.stats import norm |
|
|
|
|
|
|
|
class GeneralModel(Model): |
|
|
|
def __init__(self): |
|
super() |
|
self.segments = [] |
|
self.ipats = [] |
|
self.model_gen = [] |
|
self.state = { |
|
'convolve_max': 240, |
|
'convolve_min': 200, |
|
'WINDOW_SIZE': 240, |
|
} |
|
self.all_conv = [] |
|
|
|
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None: |
|
data = dataframe['value'] |
|
convolve_list = [] |
|
patterns_list = [] |
|
for segment in segments: |
|
if segment['labeled']: |
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
if len(segment_data) == 0: |
|
continue |
|
x = segment_from_index + int((segment_to_index - segment_from_index) / 2) |
|
self.ipats.append(x) |
|
segment_data = data[x - self.state['WINDOW_SIZE'] : x + self.state['WINDOW_SIZE']] |
|
segment_min = min(segment_data) |
|
segment_data = segment_data - segment_min |
|
patterns_list.append(segment_data) |
|
|
|
self.model_gen = utils.get_av_model(patterns_list) |
|
for n in range(len(segments)): #labeled segments |
|
labeled_data = data[self.ipats[n] - self.state['WINDOW_SIZE']: self.ipats[n] + self.state['WINDOW_SIZE'] + 1] |
|
labeled_data = labeled_data - min(labeled_data) |
|
auto_convolve = scipy.signal.fftconvolve(labeled_data, labeled_data) |
|
convolve_data = scipy.signal.fftconvolve(labeled_data, self.model_gen) |
|
convolve_list.append(max(auto_convolve)) |
|
convolve_list.append(max(convolve_data)) |
|
|
|
if len(convolve_list) > 0: |
|
self.state['convolve_max'] = float(max(convolve_list)) |
|
else: |
|
self.state['convolve_max'] = self.state['WINDOW_SIZE'] / 3 |
|
|
|
if len(convolve_list) > 0: |
|
self.state['convolve_min'] = float(min(convolve_list)) |
|
else: |
|
self.state['convolve_min'] = self.state['WINDOW_SIZE'] / 3 |
|
|
|
def do_predict(self, dataframe: pd.DataFrame) -> list: |
|
data = dataframe['value'] |
|
pat_data = self.model_gen |
|
y = max(pat_data) |
|
|
|
for i in range(self.state['WINDOW_SIZE'] * 2, len(data)): |
|
watch_data = data[i - self.state['WINDOW_SIZE'] * 2: i] |
|
w = min(watch_data) |
|
watch_data = watch_data - w |
|
conv = scipy.signal.fftconvolve(watch_data, pat_data) |
|
self.all_conv.append(max(conv)) |
|
all_conv_peaks = utils.peak_finder(self.all_conv, self.state['WINDOW_SIZE'] * 2) |
|
|
|
filtered = self.__filter_prediction(all_conv_peaks, data) |
|
return set(item + self.state['WINDOW_SIZE'] for item in filtered) |
|
|
|
def __filter_prediction(self, segments: list, data: list): |
|
if len(segments) == 0 or len(self.ipats) == 0: |
|
return [] |
|
delete_list = [] |
|
|
|
for val in segments: |
|
if self.all_conv[val] < self.state['convolve_min'] * 0.8: |
|
delete_list.append(val) |
|
|
|
for item in delete_list: |
|
segments.remove(item) |
|
|
|
return set(segments)
|
|
|