You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
4.4 KiB
131 lines
4.4 KiB
from anomaly_model import AnomalyModel |
|
from pattern_detection_model import PatternDetectionModel |
|
import queue |
|
import threading |
|
import json |
|
import logging |
|
import sys |
|
import traceback |
|
|
|
logging.basicConfig(level=logging.DEBUG, |
|
format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', |
|
filename='analytic_toolset.log', |
|
filemode='a') |
|
logger = logging.getLogger('analytic_toolset') |
|
|
|
|
|
class worker(object): |
|
models_cache = {} |
|
thread = None |
|
queue = queue.Queue() |
|
|
|
def start(self): |
|
self.thread = threading.Thread(target=self.run) |
|
self.thread.start() |
|
|
|
def stop(self): |
|
if self.thread: |
|
self.queue.put(None) |
|
self.thread.join() |
|
|
|
def run(self): |
|
while True: |
|
task = self.queue.get() |
|
if task['type'] == "stop": |
|
break |
|
self.do_task(task) |
|
self.queue.task_done() |
|
|
|
def add_task(self, task): |
|
self.queue.put(task) |
|
|
|
def do_task(self, task): |
|
try: |
|
type = task['type'] |
|
anomaly_id = task['anomaly_id'] |
|
if type == "predict": |
|
last_prediction_time = task['last_prediction_time'] |
|
analytics_type = task['analytics_type'] |
|
preset = None |
|
if "preset" in task: |
|
preset = task['preset'] |
|
result = self.do_predict(anomaly_id, last_prediction_time, analytics_type, preset) |
|
elif type == "learn": |
|
segments = task['segments'] |
|
analytics_type = task['analytics_type'] |
|
preset = None |
|
if "preset" in task: |
|
preset = task['preset'] |
|
result = self.do_learn(anomaly_id, segments, analytics_type, preset) |
|
else: |
|
result = { |
|
'status': "failed", |
|
'error': "unknown type " + str(type) |
|
} |
|
except Exception as e: |
|
#traceback.extract_stack() |
|
error_text = traceback.format_exc() |
|
logger.error("Exception: '%s'" % error_text) |
|
result = { |
|
'task': type, |
|
'status': "failed", |
|
'anomaly_id': anomaly_id, |
|
'error': str(e) |
|
} |
|
return result |
|
|
|
def do_learn(self, anomaly_id, segments, analytics_type, preset=None): |
|
model = self.get_model(anomaly_id, analytics_type, preset) |
|
model.synchronize_data() |
|
last_prediction_time = model.learn(segments) |
|
result = self.do_predict(anomaly_id, last_prediction_time, analytics_type, preset) |
|
result['task'] = 'learn' |
|
return result |
|
|
|
def do_predict(self, anomaly_id, last_prediction_time, analytics_type, preset=None): |
|
model = self.get_model(anomaly_id, analytics_type, preset) |
|
model.synchronize_data() |
|
segments, last_prediction_time = model.predict(last_prediction_time) |
|
return { |
|
'task': "predict", |
|
'status': "success", |
|
'anomaly_id': anomaly_id, |
|
'segments': segments, |
|
'last_prediction_time': last_prediction_time |
|
} |
|
|
|
def get_model(self, anomaly_id, analytics_type, preset=None): |
|
if anomaly_id not in self.models_cache: |
|
if analytics_type == "anomalies": |
|
model = AnomalyModel(anomaly_id) |
|
elif analytics_type == "patterns": |
|
model = PatternDetectionModel(anomaly_id, preset) |
|
self.models_cache[anomaly_id] = model |
|
return self.models_cache[anomaly_id] |
|
|
|
|
|
if __name__ == "__main__": |
|
w = worker() |
|
logger.info("Worker was started") |
|
while True: |
|
try: |
|
text = input("") |
|
task = json.loads(text) |
|
logger.info("Received command '%s'" % text) |
|
if task['type'] == "stop": |
|
logger.info("Stopping...") |
|
break |
|
print(json.dumps({ |
|
'task': task['type'], |
|
'anomaly_id': task['anomaly_id'], |
|
'__task_id': task['__task_id'], |
|
'status': "in progress" |
|
})) |
|
sys.stdout.flush() |
|
res = w.do_task(task) |
|
res['__task_id'] = task['__task_id'] |
|
print(json.dumps(res)) |
|
sys.stdout.flush() |
|
except Exception as e: |
|
logger.error("Exception: '%s'" % str(e)) |
|
|
|
|