You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
254 lines
9.5 KiB
254 lines
9.5 KiB
import os.path |
|
import pandas as pd |
|
import numpy as np |
|
import math |
|
import time |
|
|
|
from tsfresh.transformers.feature_augmenter import FeatureAugmenter |
|
from tsfresh.feature_extraction.settings import from_columns |
|
from pytz import timezone |
|
|
|
|
|
class data_preprocessor: |
|
# augmented = None |
|
frame_size = 16 |
|
calc_features = [ |
|
# "value__agg_linear_trend__f_agg_\"max\"__chunk_len_5__attr_\"intercept\"", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_20", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_5", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_10", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_20", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_20", |
|
# "value__fft_coefficient__coeff_3__attr_\"abs\"", |
|
"time_of_day_column_x", |
|
"time_of_day_column_y", |
|
"value__abs_energy", |
|
"value__absolute_sum_of_changes", |
|
"value__sum_of_reoccurring_data_points", |
|
] |
|
time_features = [ |
|
'time_of_day_column_x', |
|
'time_of_day_column_y' |
|
] |
|
chunk_size = 50000 |
|
|
|
def __init__(self, data_provider, augmented_path): |
|
self.data_provider = data_provider |
|
self.augmented_path = augmented_path |
|
self.last_chunk_index = 0 |
|
self.total_size = 0 |
|
self.__init_chunks() |
|
self.synchronize() |
|
|
|
def set_data_provider(self, data_provider): |
|
self.data_provider = data_provider |
|
|
|
def synchronize(self): |
|
start_frame = self.total_size |
|
stop_frame = self.data_provider.size() |
|
|
|
max_chunk_size = 30000 |
|
for frame in range(start_frame, stop_frame, max_chunk_size): |
|
data = self.__get_source_frames(frame, min(stop_frame, frame + max_chunk_size)) |
|
|
|
if len(data) == 0: |
|
return |
|
|
|
append_augmented = self.__extract_features(data, self.calc_features) |
|
self.__append_data(append_augmented) |
|
|
|
def expand_indexes(self, start_index, stop_index): |
|
return start_index, stop_index |
|
|
|
def get_augmented_data(self, start_index, stop_index, anomalies=[]): |
|
start_frame = start_index |
|
stop_frame = stop_index |
|
augmented = self.__get_data(start_frame, stop_frame) |
|
if len(anomalies) > 0: |
|
anomalies_indexes = self.transform_anomalies(anomalies) |
|
augmented = augmented.drop(anomalies_indexes) |
|
|
|
return augmented |
|
|
|
def transform_anomalies(self, anomalies): |
|
anomaly_index = None |
|
dataframe = self.data_provider.get_dataframe(None) |
|
for anomaly in anomalies: |
|
start_time = pd.to_datetime(anomaly['start'], unit='ms') |
|
finish_time = pd.to_datetime(anomaly['finish'], unit='ms') |
|
current_index = (dataframe['timestamp'] >= start_time) & (dataframe['timestamp'] <= finish_time) |
|
if anomaly_index is not None: |
|
anomaly_index = (anomaly_index | current_index) |
|
else: |
|
anomaly_index = current_index |
|
|
|
rows = dataframe[anomaly_index] |
|
indexes = np.floor_divide(rows.index, self.frame_size) |
|
# indexes = np.unique(rows.index) |
|
return indexes |
|
|
|
def inverse_transform_anomalies(self, prediction): |
|
anomalies = [] |
|
cur_anomaly = None |
|
source_dataframe = self.data_provider.get_dataframe(None) |
|
for i in prediction.index: |
|
if prediction[i]: |
|
start_frame_index = max(0, i - self.frame_size + 1) |
|
finish_frame_index = i |
|
start = source_dataframe['timestamp'][start_frame_index] |
|
finish = source_dataframe['timestamp'][finish_frame_index] |
|
if cur_anomaly is None: |
|
if len(anomalies) > 0 and start <= anomalies[len(anomalies) - 1]['finish']: |
|
cur_anomaly = anomalies[len(anomalies) - 1] |
|
anomalies.pop() |
|
else: |
|
cur_anomaly = {'start': start, 'finish': finish} |
|
cur_anomaly['finish'] = finish |
|
elif cur_anomaly is not None: |
|
anomalies.append(cur_anomaly) |
|
cur_anomaly = None |
|
|
|
if cur_anomaly: |
|
anomalies.append(cur_anomaly) |
|
return anomalies |
|
|
|
def __get_data(self, start_index, stop_index): |
|
result = pd.DataFrame() |
|
start_chunk = start_index // self.chunk_size |
|
finish_chunk = stop_index // self.chunk_size |
|
for chunk_num in range(start_chunk, finish_chunk + 1): |
|
chunk = self.__load_chunk(chunk_num) |
|
if chunk_num == finish_chunk: |
|
chunk = chunk[:stop_index % self.chunk_size] |
|
if chunk_num == start_chunk: |
|
chunk = chunk[start_index % self.chunk_size:] |
|
result = pd.concat([result, chunk]) |
|
return result |
|
|
|
def __init_chunks(self): |
|
chunk_index = 0 |
|
self.last_chunk_index = 0 |
|
while True: |
|
filename = self.augmented_path |
|
if chunk_index > 0: |
|
filename += "." + str(chunk_index) |
|
if os.path.exists(filename): |
|
self.last_chunk_index = chunk_index |
|
else: |
|
break |
|
chunk_index += 1 |
|
self.total_size = self.last_chunk_index * self.chunk_size |
|
last_chunk = self.__load_chunk(self.last_chunk_index) |
|
self.total_size += len(last_chunk) |
|
|
|
def __append_data(self, dataframe): |
|
while len(dataframe) > 0: |
|
chunk = self.__load_chunk(self.last_chunk_index) |
|
rows_count = min(self.chunk_size - len(chunk), len(dataframe)) |
|
|
|
rows = dataframe.iloc[0:rows_count] |
|
self.__save_chunk(self.last_chunk_index, rows) |
|
self.total_size += rows_count |
|
|
|
dataframe = dataframe[rows_count:] |
|
if len(dataframe) > 0: |
|
self.last_chunk_index += 1 |
|
|
|
def __load_chunk(self, index): |
|
filename = self.augmented_path |
|
if index > 0: |
|
filename += "." + str(index) |
|
|
|
if os.path.exists(filename): |
|
chunk = pd.read_csv(filename) |
|
frame_index = np.arange(index * self.chunk_size, index * self.chunk_size + len(chunk)) |
|
chunk = chunk.set_index(frame_index) |
|
return chunk |
|
return pd.DataFrame() |
|
|
|
def __save_chunk(self, index, dataframe): |
|
filename = self.augmented_path |
|
if index > 0: |
|
filename += "." + str(index) |
|
|
|
if os.path.exists(filename): |
|
dataframe.to_csv(filename, mode='a', index=False, header=False) |
|
else: |
|
dataframe.to_csv(filename, mode='w', index=False, header=True) |
|
|
|
def __get_source_frames(self, start_frame, stop_frame): |
|
start_index = start_frame |
|
stop_index = stop_frame |
|
|
|
# frame = self.source_dataframe[start_index:stop_index] |
|
# mat = frame.as_matrix() |
|
|
|
source_dataframe = self.data_provider.get_data_range(max(start_index - self.frame_size + 1, 0), stop_index) |
|
|
|
dataframe = None |
|
for i in range(start_index, stop_index): |
|
mini = max(0, i - self.frame_size + 1) |
|
frame = source_dataframe.loc[mini:i + 1].copy() |
|
frame['id'] = i |
|
if dataframe is None: |
|
dataframe = frame |
|
else: |
|
dataframe = dataframe.append(frame, ignore_index=True) |
|
|
|
#dataframe = self.source_dataframe[start_index:stop_index].copy() |
|
#dataframe['id'] = np.floor_divide(dataframe.index, self.frame_size) |
|
dataframe.reset_index(drop=True, inplace=True) |
|
return dataframe |
|
|
|
def __extract_features(self, data, features=None): |
|
start_frame = data['id'][0] |
|
stop_frame = data['id'][len(data)-1] + 1 |
|
augmented = pd.DataFrame(index=np.arange(start_frame, stop_frame)) |
|
|
|
# tsfresh features |
|
tsfresh_features = None |
|
if features is not None: |
|
tsfresh_features = set(features) - set(self.time_features) |
|
|
|
augmented = self.__extract_tfresh_features(data, augmented, tsfresh_features) |
|
|
|
# time features |
|
augmented = self.__extract_time_features(data, augmented, features) |
|
return augmented |
|
|
|
def __extract_tfresh_features(self, data, augmented, features): |
|
relevant_extraction_settings = None |
|
if features is not None: |
|
augmented_features = set(features) |
|
relevant_extraction_settings = from_columns(augmented_features) |
|
|
|
#impute_function = partial(impute_dataframe_range, col_to_max=self.col_to_max, |
|
# col_to_min=self.col_to_min, col_to_median=self.col_to_median) |
|
|
|
feature_extractor = FeatureAugmenter( |
|
kind_to_fc_parameters=relevant_extraction_settings, |
|
column_id='id', |
|
column_sort='timestamp') |
|
feature_extractor.set_timeseries_container(data) |
|
|
|
return feature_extractor.transform(augmented) |
|
|
|
def __extract_time_features(self, data, augmented, features): |
|
if features is None: |
|
features = self.time_features |
|
|
|
seconds = np.zeros(len(augmented)) |
|
first_id = data['id'][0] |
|
|
|
for i in range(len(data)): |
|
id = data['id'][i] - first_id |
|
timeobj = data['timestamp'][i].time() |
|
seconds[id] = timeobj.second + 60 * (timeobj.minute + 60 * timeobj.hour) |
|
|
|
norm_seconds = 2 * math.pi * seconds / (24 * 3600) |
|
|
|
if 'time_of_day_column_x' in features: |
|
augmented['time_of_day_column_x'] = np.cos(norm_seconds) |
|
if 'time_of_day_column_y' in features: |
|
augmented['time_of_day_column_y'] = np.sin(norm_seconds) |
|
return augmented
|
|
|