You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
152 lines
4.6 KiB
152 lines
4.6 KiB
import { queryByMetric } from 'grafana-datasource-kit'; |
|
|
|
jest.mock('grafana-datasource-kit', () => ( |
|
{ |
|
...(jest.requireActual('grafana-datasource-kit')), |
|
queryByMetric: jest.fn((metric, url, from, to, apiKey) => { |
|
return { values:[], columns:[] } |
|
}) |
|
} |
|
)); |
|
|
|
import { saveAnalyticUnitFromObject, runDetect, onDetect, getHSR } from '../src/controllers/analytics_controller'; |
|
import * as AnalyticUnit from '../src/models/analytic_units'; |
|
import * as AnalyticUnitCache from '../src/models/analytic_unit_cache_model'; |
|
import * as Segment from '../src/models/segment_model'; |
|
import { TEST_ANALYTIC_UNIT_ID } from './utils_for_tests/analytic_units'; |
|
import { buildSegments, clearSegmentsDB, convertSegmentsToTimeRanges } from './utils_for_tests/segments'; |
|
import { HASTIC_API_KEY } from '../src/config'; |
|
|
|
import * as _ from 'lodash'; |
|
|
|
|
|
const DEFAULT_ANALYTIC_UNIT_OBJECT = { |
|
name: "test", |
|
grafanaUrl: "http://127.0.0.1:3000", |
|
panelId: "ZLc0KfNZk/2", |
|
type: "GENERAL", |
|
metric: { |
|
datasource: { |
|
url: "api/datasources/proxy/5/query", |
|
method: "GET", |
|
data: null, |
|
params: { |
|
db:"dbname", |
|
q: "SELECT mean(\"value\") FROM \"autogen\".\"tcpconns_value\" WHERE time >= now() - 6h GROUP BY time(20s) fill(null)", |
|
epoch: "ms" |
|
}, |
|
type: "influxdb" |
|
}, |
|
targets: [ |
|
{ |
|
groupBy: [ |
|
{ |
|
params: ["$__interval"], |
|
type: "time" |
|
}, |
|
{ |
|
params: ["null"], |
|
type: "fill" |
|
} |
|
], |
|
measurement: "tcpconns_value", |
|
orderByTime: "ASC", |
|
policy: "autogen", |
|
refId: "A", |
|
resultFormat: "time_series", |
|
select: [[{"params":["value"],"type":"field"},{"params":[],"type":"mean"}]],"tags":[] |
|
} |
|
] |
|
}, |
|
alert: false, |
|
labeledColor: "#FF99FF", |
|
deletedColor: "#00f0ff", |
|
detectorType: "pattern", |
|
visible: true, |
|
collapsed: false, |
|
createdAt: {"$$date":1564476040880}, |
|
updatedAt: {"$$date":1564476040880} |
|
} |
|
|
|
const WINDOW_SIZE = 10; |
|
const TIME_STEP = 1000; |
|
|
|
async function addTestUnitToDB(analyticUnitObj: any): Promise<string> { |
|
const analyticUnitId = await saveAnalyticUnitFromObject(analyticUnitObj); |
|
await AnalyticUnit.update(analyticUnitId, { lastDetectionTime: 1000 }); |
|
await AnalyticUnitCache.create(analyticUnitId); |
|
await AnalyticUnitCache.setData(analyticUnitId, { |
|
windowSize: WINDOW_SIZE, |
|
timeStep: TIME_STEP |
|
}); |
|
return analyticUnitId; |
|
}; |
|
|
|
describe('Check detection range', function() { |
|
it('check range >= 2 * window size * timeStep', async () => { |
|
const from = 1500000000000; |
|
const to = 1500000000001; |
|
const expectedFrom = to - WINDOW_SIZE * TIME_STEP * 2; |
|
|
|
const id = await addTestUnitToDB(DEFAULT_ANALYTIC_UNIT_OBJECT); |
|
await runDetect(id, from, to); |
|
expect(queryByMetric).toBeCalledWith(DEFAULT_ANALYTIC_UNIT_OBJECT.metric, undefined, expectedFrom, to, HASTIC_API_KEY); |
|
}); |
|
}); |
|
|
|
describe('onDetect', () => { |
|
const INITIAL_SEGMENTS = buildSegments([[0, 1], [2, 3], [4, 5]]); |
|
|
|
beforeEach(async () => { |
|
await Segment.mergeAndInsertSegments(INITIAL_SEGMENTS); |
|
}); |
|
|
|
afterEach(async () => { |
|
await clearSegmentsDB(); |
|
}); |
|
|
|
it('should not send a webhook after merging', async () => { |
|
const detectedSegmentIds = await onDetect({ |
|
analyticUnitId: TEST_ANALYTIC_UNIT_ID, |
|
segments: buildSegments([[5, 6]]), |
|
lastDetectionTime: 0, |
|
cache: { |
|
data: { |
|
timeStep: 1 |
|
} |
|
} |
|
}); |
|
const detectedSegments = await Promise.all( |
|
detectedSegmentIds.map(id => Segment.findOne(id)) |
|
); |
|
|
|
const detectedRanges = convertSegmentsToTimeRanges(detectedSegments); |
|
expect(detectedRanges).toEqual([]); |
|
}); |
|
|
|
it('should send a webhook when there was no merging', async () => { |
|
const detectedSegmentIds = await onDetect({ |
|
analyticUnitId: TEST_ANALYTIC_UNIT_ID, |
|
segments: buildSegments([[7, 8]]), |
|
lastDetectionTime: 0 |
|
}); |
|
const detectedSegments = await Promise.all( |
|
detectedSegmentIds.map(id => Segment.findOne(id)) |
|
); |
|
|
|
const detectedRanges = convertSegmentsToTimeRanges(detectedSegments); |
|
expect(detectedRanges).toEqual([[7, 8]]); |
|
}); |
|
}); |
|
|
|
describe('getHSR', function() { |
|
it('should return nothing if unit state is LEARNING', async () => { |
|
let unitObj = _.clone(DEFAULT_ANALYTIC_UNIT_OBJECT); |
|
unitObj.detectorType = 'anomaly'; |
|
const analyticUnitId = await addTestUnitToDB(unitObj); |
|
await AnalyticUnitCache.remove(analyticUnitId); |
|
const unit = await AnalyticUnit.findById(analyticUnitId); |
|
const result = await getHSR(unit, 9000, 100000); |
|
expect(result).toEqual({"hsr": {"columns": [], "values": []}}); |
|
}); |
|
});
|
|
|