You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

91 lines
3.2 KiB

from models import Model, AnalyticUnitCache
import utils
import numpy as np
import pandas as pd
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
import math
from scipy.stats import gaussian_kde
from scipy.stats import norm
from typing import Optional
WINDOW_SIZE = 150
class GeneralModel(Model):
def __init__(self):
super()
self.segments = []
self.ipats = []
self.state = {
'convolve_max': WINDOW_SIZE,
}
self.all_conv = []
def fit(self, dataframe: pd.DataFrame, segments: list, cache: Optional[AnalyticUnitCache]) -> AnalyticUnitCache:
if type(cache) is AnalyticUnitCache:
self.state = cache
self.segments = segments
data = dataframe['value']
convolve_list = []
for segment in segments:
if segment['labeled']:
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
segment_data = data[segment_from_index: segment_to_index + 1]
if len(segment_data) == 0:
continue
x = segment_from_index + int((segment_to_index - segment_from_index) / 2)
self.ipats.append(x)
segment_data = data[x - WINDOW_SIZE : x + WINDOW_SIZE]
segment_min = min(segment_data)
segment_data = segment_data - segment_min
convolve = scipy.signal.fftconvolve(segment_data, segment_data)
convolve_list.append(max(convolve))
if len(convolve_list) > 0:
self.state['convolve_max'] = float(max(convolve_list))
else:
self.state['convolve_max'] = WINDOW_SIZE / 3
return self.state
def do_predict(self, dataframe: pd.DataFrame) -> list:
data = dataframe['value']
pat_data = data[self.ipats[0] - WINDOW_SIZE: self.ipats[0] + WINDOW_SIZE]
x = min(pat_data)
pat_data = pat_data - x
y = max(pat_data)
for i in range(WINDOW_SIZE * 2, len(data)):
watch_data = data[i - WINDOW_SIZE * 2: i]
w = min(watch_data)
watch_data = watch_data - w
conv = scipy.signal.fftconvolve(pat_data, watch_data)
self.all_conv.append(max(conv))
all_conv_peaks = utils.peak_finder(self.all_conv, WINDOW_SIZE * 2)
filtered = self.__filter_prediction(all_conv_peaks, data)
filtered = set(item + WINDOW_SIZE for item in filtered)
# TODO: convert from ns to ms more proper way (not dividing by 10^6)
return [(dataframe['timestamp'][x - 1].value / 1000000, dataframe['timestamp'][x + 1].value / 1000000) for x in filtered]
def __filter_prediction(self, segments: list, data: list):
if len(segments) == 0 or len(self.ipats) == 0:
return []
delete_list = []
for val in segments:
if self.all_conv[val] < self.state['convolve_max'] * 0.8:
delete_list.append(val)
for item in delete_list:
segments.remove(item)
return set(segments)