You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.7 KiB
100 lines
3.7 KiB
from models import PeakModel, DropModel, TroughModel, JumpModel, GeneralModel |
|
from models import DropModelState, JumpModelState, GeneralModelState |
|
import utils.meta |
|
import aiounittest |
|
from analytic_unit_manager import AnalyticUnitManager |
|
from collections import namedtuple |
|
|
|
TestData = namedtuple('TestData', ['uid', 'type', 'values', 'segments']) |
|
|
|
def get_random_id() -> str: |
|
return str(id(list())) |
|
|
|
class TestDataset(aiounittest.AsyncTestCase): |
|
|
|
timestep = 50 #ms |
|
|
|
def _fill_task(self, uid, data, task_type, analytic_unit_type, segments=None, cache=None): |
|
task = { |
|
'analyticUnitId': uid, |
|
'type': task_type, |
|
'payload': { |
|
'data': data, |
|
'from': data[0][0], |
|
'to': data[-1][0], |
|
'analyticUnitType': analytic_unit_type, |
|
'detector': 'pattern', |
|
'cache': cache |
|
}, |
|
'_id': get_random_id() |
|
} |
|
if segments: task['payload']['segments'] = segments |
|
|
|
return task |
|
|
|
def _convert_values(self, values) -> list: |
|
from_t = 0 |
|
to_t = len(values) * self.timestep |
|
return list(zip(range(from_t, to_t, self.timestep), values)) |
|
|
|
def _index_to_test_time(self, idx) -> int: |
|
return idx * self.timestep |
|
|
|
def _get_learn_task(self, test_data): |
|
uid, analytic_unit_type, values, segments = test_data |
|
data = self._convert_values(values) |
|
segments = [{ |
|
'analyticUnitId': uid, |
|
'from': self._index_to_test_time(s[0]), |
|
'to': self._index_to_test_time(s[1]), |
|
'labeled': True, |
|
'deleted': False |
|
} for s in segments] |
|
return self._fill_task(uid, data, 'LEARN', analytic_unit_type, segments=segments) |
|
|
|
def _get_detect_task(self, test_data, cache): |
|
uid, analytic_unit_type, values, _ = test_data |
|
data = self._convert_values(values) |
|
return self._fill_task(uid, data, 'DETECT', analytic_unit_type, cache=cache) |
|
|
|
def _get_test_dataset(self, pattern) -> tuple: |
|
""" |
|
pattern name: ([dataset values], [list of segments]) |
|
|
|
segment - (begin, end) - indexes in dataset values |
|
returns dataset in format (data: List[int], segments: List[List[int]]) |
|
""" |
|
datasets = { |
|
'PEAK': ([0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0], [[2, 8]]), |
|
'JUMP': ([0, 0, 1, 2, 3, 4, 4, 4], [[1, 6]]), |
|
'DROP': ([4, 4, 4, 3, 2, 1, 0, 0], [[1, 6]]), |
|
'TROUGH': ([4, 4, 3, 2, 1, 0, 1, 2, 3, 4, 4], [[1, 9]]), |
|
'GENERAL': ([0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0], [[2, 8]]) |
|
} |
|
return datasets[pattern] |
|
|
|
async def _learn(self, task, manager=None) -> dict: |
|
if not manager: manager = AnalyticUnitManager() |
|
result = await manager.handle_analytic_task(task) |
|
return result['payload']['cache'] |
|
|
|
async def _detect(self, task, manager=None) -> dict: |
|
if not manager: manager = AnalyticUnitManager() |
|
result = await manager.handle_analytic_task(task) |
|
return result |
|
|
|
async def _test_detect(self, test_data, manager=None): |
|
learn_task = self._get_learn_task(test_data) |
|
cache = await self._learn(learn_task, manager) |
|
detect_task = self._get_detect_task(test_data, cache) |
|
result = await self._detect(detect_task, manager) |
|
return result |
|
|
|
async def test_unit_manager(self): |
|
test_data = TestData(get_random_id(), 'PEAK', [0,1,2,5,10,5,2,1,1,1,0,0,0,0], [[1,7]]) |
|
manager = AnalyticUnitManager() |
|
|
|
with_manager = await self._test_detect(test_data, manager) |
|
without_manager = await self._test_detect(test_data) |
|
self.assertEqual(with_manager, without_manager) |
|
|
|
|