You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
5.8 KiB
151 lines
5.8 KiB
import os.path |
|
from data_provider import DataProvider |
|
from data_preprocessor import data_preprocessor |
|
import json |
|
import pandas as pd |
|
import logging |
|
from urllib.parse import urlparse |
|
import config |
|
|
|
|
|
logger = logging.getLogger('analytic_toolset') |
|
|
|
|
|
def anomalies_to_timestamp(anomalies): |
|
for anomaly in anomalies: |
|
anomaly['start'] = int(anomaly['start'].timestamp() * 1000) |
|
anomaly['finish'] = int(anomaly['finish'].timestamp() * 1000) |
|
return anomalies |
|
|
|
|
|
class AnomalyModel: |
|
|
|
def __init__(self, anomaly_name): |
|
self.anomaly_name = anomaly_name |
|
self.load_anomaly_config() |
|
|
|
parsedUrl = urlparse(self.anomaly_config['panelUrl']) |
|
origin = parsedUrl.scheme + '://' + parsedUrl.netloc |
|
|
|
datasource = self.anomaly_config['datasource'] |
|
datasource['origin'] = origin |
|
metric_name = self.anomaly_config['metric']['targets'][0] |
|
|
|
target_filename = os.path.join(config.METRICS_FOLDER, metric_name + ".json") |
|
|
|
dataset_filename = os.path.join(config.DATASET_FOLDER, metric_name + ".csv") |
|
augmented_path = os.path.join(config.DATASET_FOLDER, metric_name + "_augmented.csv") |
|
|
|
with open(target_filename, 'r') as file: |
|
target = json.load(file) |
|
|
|
self.data_prov = DataProvider(datasource, target, dataset_filename) |
|
self.preprocessor = data_preprocessor(self.data_prov, augmented_path) |
|
self.model = None |
|
|
|
self.__load_model() |
|
|
|
def anomalies_box(self, anomalies): |
|
max_time = 0 |
|
min_time = float("inf") |
|
for anomaly in anomalies: |
|
max_time = max(max_time, anomaly['finish']) |
|
min_time = min(min_time, anomaly['start']) |
|
min_time = pd.to_datetime(min_time, unit='ms') |
|
max_time = pd.to_datetime(max_time, unit='ms') |
|
return min_time, max_time |
|
|
|
def learn(self, anomalies): |
|
logger.info("Start to learn for anomaly_name='%s'" % self.anomaly_name) |
|
|
|
confidence = 0.02 |
|
dataframe = self.data_prov.get_dataframe() |
|
start_index, stop_index = 0, len(dataframe) |
|
if len(anomalies) > 0: |
|
confidence = 0.0 |
|
min_time, max_time = self.anomalies_box(anomalies) |
|
dataframe = dataframe[dataframe['timestamp'] <= max_time] |
|
dataframe = dataframe[dataframe['timestamp'] >= min_time] |
|
|
|
train_augmented = self.preprocessor.get_augmented_data( |
|
dataframe.index[0], |
|
dataframe.index[-1], |
|
anomalies |
|
) |
|
|
|
self.model = self.create_algorithm() |
|
self.model.fit(train_augmented, confidence) |
|
if len(anomalies) > 0: |
|
last_dataframe_time = dataframe.iloc[- 1]['timestamp'] |
|
last_prediction_time = int(last_dataframe_time.timestamp() * 1000) |
|
else: |
|
last_prediction_time = 0 |
|
|
|
self.__save_model() |
|
logger.info("Learning is finished for anomaly_name='%s'" % self.anomaly_name) |
|
return last_prediction_time |
|
|
|
def predict(self, last_prediction_time): |
|
logger.info("Start to predict for anomaly type='%s'" % self.anomaly_name) |
|
last_prediction_time = pd.to_datetime(last_prediction_time, unit='ms') |
|
|
|
start_index = self.data_prov.get_upper_bound(last_prediction_time) |
|
stop_index = self.data_prov.size() |
|
|
|
last_prediction_time = int(last_prediction_time.timestamp() * 1000) |
|
|
|
predicted_anomalies = [] |
|
if start_index < stop_index: |
|
max_chunk_size = 50000 |
|
predicted = pd.Series() |
|
for index in range(start_index, stop_index, max_chunk_size): |
|
chunk_start = index |
|
chunk_finish = min(index + max_chunk_size, stop_index) |
|
predict_augmented = self.preprocessor.get_augmented_data(chunk_start, chunk_finish) |
|
|
|
assert(len(predict_augmented) == chunk_finish - chunk_start) |
|
|
|
predicted_current = self.model.predict(predict_augmented) |
|
predicted = pd.concat([predicted, predicted_current]) |
|
predicted_anomalies = self.preprocessor.inverse_transform_anomalies(predicted) |
|
|
|
last_row = self.data_prov.get_data_range(stop_index - 1, stop_index) |
|
|
|
last_dataframe_time = last_row.iloc[0]['timestamp'] |
|
predicted_anomalies = anomalies_to_timestamp(predicted_anomalies) |
|
last_prediction_time = int(last_dataframe_time.timestamp() * 1000) |
|
|
|
logger.info("Predicting is finished for anomaly type='%s'" % self.anomaly_name) |
|
return predicted_anomalies, last_prediction_time |
|
|
|
def synchronize_data(self): |
|
self.data_prov.synchronize() |
|
self.preprocessor.set_data_provider(self.data_prov) |
|
self.preprocessor.synchronize() |
|
|
|
def load_anomaly_config(self): |
|
with open(os.path.join(config.ANOMALIES_FOLDER, self.anomaly_name + ".json"), 'r') as config_file: |
|
self.anomaly_config = json.load(config_file) |
|
|
|
def get_anomalies(self): |
|
labeled_anomalies_file = os.path.join(config.ANOMALIES_FOLDER, self.anomaly_name + "_labeled.json") |
|
if not os.path.exists(labeled_anomalies_file): |
|
return [] |
|
with open(labeled_anomalies_file) as file: |
|
return json.load(file) |
|
|
|
def create_algorithm(self): |
|
from supervised_algorithm import supervised_algorithm |
|
return supervised_algorithm() |
|
|
|
def __save_model(self): |
|
logger.info("Save model '%s'" % self.anomaly_name) |
|
model_filename = os.path.join(config.MODELS_FOLDER, self.anomaly_name + ".m") |
|
self.model.save(model_filename) |
|
|
|
def __load_model(self): |
|
logger.info("Load model '%s'" % self.anomaly_name) |
|
model_filename = os.path.join(config.MODELS_FOLDER, self.anomaly_name + ".m") |
|
if os.path.exists(model_filename): |
|
self.model = self.create_algorithm() |
|
self.model.load(model_filename)
|
|
|