You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

138 lines
5.8 KiB

from models import Model
import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
import utils
import numpy as np
import pandas as pd
SMOOTHING_COEFF = 2400
EXP_SMOOTHING_FACTOR = 0.01
class PeakModel(Model):
def __init__(self):
super()
self.segments = []
self.ipeaks = []
self.model_peak = []
self.state = {
'confidence': 1.5,
'convolve_max': 570000,
'convolve_min': 530000,
'WINDOW_SIZE': 240,
'conv_del_min': 54000,
'conv_del_max': 55000,
}
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None:
data = dataframe['value']
confidences = []
convolve_list = []
patterns_list = []
for segment in segments:
if segment['labeled']:
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
segment_data = data[segment_from_index: segment_to_index + 1]
if len(segment_data) == 0:
continue
segment_min = min(segment_data)
segment_max = max(segment_data)
confidences.append(0.2 * (segment_max - segment_min))
segment_max_index = segment_data.idxmax()
self.ipeaks.append(segment_max_index)
labeled_peak = data[segment_max_index - self.state['WINDOW_SIZE']: segment_max_index + self.state['WINDOW_SIZE'] + 1]
labeled_peak = labeled_peak - min(labeled_peak)
patterns_list.append(labeled_peak)
self.model_peak = utils.get_av_model(patterns_list)
for n in range(len(segments)): #labeled segments
labeled_peak = data[self.ipeaks[n] - self.state['WINDOW_SIZE']: self.ipeaks[n] + self.state['WINDOW_SIZE'] + 1]
labeled_peak = labeled_peak - min(labeled_peak)
auto_convolve = scipy.signal.fftconvolve(labeled_peak, labeled_peak)
convolve_peak = scipy.signal.fftconvolve(labeled_peak, self.model_peak)
convolve_list.append(max(auto_convolve))
convolve_list.append(max(convolve_peak))
del_conv_list = []
for segment in segments:
if segment['deleted']:
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
segment_data = data[segment_from_index: segment_to_index + 1]
if len(segment_data) == 0:
continue
del_max_index = segment_data.idxmax()
deleted_peak = data[del_max_index - self.state['WINDOW_SIZE']: del_max_index + self.state['WINDOW_SIZE'] + 1]
deleted_peak = deleted_peak - min(deleted_peak)
del_conv_peak = scipy.signal.fftconvolve(deleted_peak, self.model_peak)
del_conv_list.append(max(del_conv_peak))
if len(confidences) > 0:
self.state['confidence'] = float(min(confidences))
else:
self.state['confidence'] = 1.5
if len(convolve_list) > 0:
self.state['convolve_max'] = float(max(convolve_list))
else:
self.state['convolve_max'] = self.state['WINDOW_SIZE']
if len(convolve_list) > 0:
self.state['convolve_min'] = float(min(convolve_list))
else:
self.state['convolve_min'] = self.state['WINDOW_SIZE']
if len(del_conv_list) > 0:
self.state['conv_del_min'] = float(min(del_conv_list))
else:
self.state['conv_del_min'] = self.state['WINDOW_SIZE']
if len(del_conv_list) > 0:
self.state['conv_del_max'] = float(max(del_conv_list))
else:
self.state['conv_del_max'] = self.state['WINDOW_SIZE']
def do_predict(self, dataframe: pd.DataFrame):
data = dataframe['value']
window_size = int(len(data)/SMOOTHING_COEFF) #test ws on flat data
all_maxs = argrelextrema(np.array(data), np.greater)[0]
extrema_list = []
for i in utils.exponential_smoothing(data + self.state['confidence'], EXP_SMOOTHING_FACTOR):
extrema_list.append(i)
segments = []
for i in all_maxs:
if data[i] > extrema_list[i]:
segments.append(i)
return self.__filter_prediction(segments, data)
def __filter_prediction(self, segments: list, data: list) -> list:
delete_list = []
variance_error = self.state['WINDOW_SIZE']
close_patterns = utils.close_filtering(segments, variance_error)
segments = utils.best_pat(close_patterns, data, 'max')
if len(segments) == 0 or len(self.ipeaks) == 0:
return []
pattern_data = self.model_peak
for segment in segments:
if segment > self.state['WINDOW_SIZE']:
convol_data = data[segment - self.state['WINDOW_SIZE']: segment + self.state['WINDOW_SIZE'] + 1]
convol_data = convol_data - min(convol_data)
conv = scipy.signal.fftconvolve(convol_data, pattern_data)
if max(conv) > self.state['convolve_max'] * 1.05 or max(conv) < self.state['convolve_min'] * 0.95:
delete_list.append(segment)
elif max(conv) < self.state['conv_del_max'] * 1.02 and max(conv) > self.state['conv_del_min'] * 0.98:
delete_list.append(segment)
else:
delete_list.append(segment)
for item in delete_list:
segments.remove(item)
return set(segments)