You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
8.5 KiB
185 lines
8.5 KiB
from models import Model |
|
|
|
import scipy.signal |
|
from scipy.fftpack import fft |
|
from scipy.signal import argrelextrema |
|
from scipy.stats import gaussian_kde |
|
|
|
import utils |
|
import numpy as np |
|
import pandas as pd |
|
|
|
|
|
class DropModel(Model): |
|
def __init__(self): |
|
super() |
|
self.segments = [] |
|
self.idrops = [] |
|
self.model_drop = [] |
|
self.state = { |
|
'confidence': 1.5, |
|
'convolve_max': 200, |
|
'convolve_min': 200, |
|
'DROP_HEIGHT': 1, |
|
'DROP_LENGTH': 1, |
|
'WINDOW_SIZE': 240, |
|
'conv_del_min': 54000, |
|
'conv_del_max': 55000, |
|
} |
|
|
|
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None: |
|
data = dataframe['value'] |
|
confidences = [] |
|
convolve_list = [] |
|
drop_height_list = [] |
|
drop_length_list = [] |
|
patterns_list = [] |
|
for segment in segments: |
|
if segment['labeled']: |
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
if len(segment_data) == 0: |
|
continue |
|
segment_min = min(segment_data) |
|
segment_max = max(segment_data) |
|
confidences.append(0.20 * (segment_max - segment_min)) |
|
flat_segment = segment_data.rolling(window = 5).mean() |
|
pdf = gaussian_kde(flat_segment.dropna()) |
|
max_drop = max(flat_segment.dropna()) |
|
min_drop = min(flat_segment.dropna()) |
|
x = np.linspace(flat_segment.dropna().min() - 1, flat_segment.dropna().max() + 1, len(flat_segment.dropna())) |
|
y = pdf(x) |
|
ax_list = list(zip(x, y)) |
|
ax_list = np.array(ax_list, np.float32) |
|
antipeaks_kde = argrelextrema(np.array(ax_list), np.less)[0] |
|
peaks_kde = argrelextrema(np.array(ax_list), np.greater)[0] |
|
try: |
|
min_peak_index = peaks_kde[0] |
|
segment_min_line = ax_list[min_peak_index, 0] |
|
max_peak_index = peaks_kde[1] |
|
segment_max_line = ax_list[max_peak_index, 0] |
|
segment_median = ax_list[antipeaks_kde[0], 0] |
|
except IndexError: |
|
segment_max_line = max_drop |
|
segment_min_line = min_drop |
|
segment_median = (max_drop - min_drop) / 2 + min_drop |
|
drop_height = 0.95 * (segment_max_line - segment_min_line) |
|
drop_height_list.append(drop_height) |
|
drop_length = utils.find_drop_length(segment_data, segment_min_line, segment_max_line) |
|
drop_length_list.append(drop_length) |
|
cen_ind = utils.drop_intersection(flat_segment.tolist(), segment_median) #finds all interseprions with median |
|
drop_center = cen_ind[0] |
|
segment_cent_index = drop_center - 5 + segment_from_index |
|
self.idrops.append(segment_cent_index) |
|
labeled_drop = data[segment_cent_index - self.state['WINDOW_SIZE']: segment_cent_index + self.state['WINDOW_SIZE'] + 1] |
|
labeled_drop = labeled_drop - min(labeled_drop) |
|
patterns_list.append(labeled_drop) |
|
|
|
self.model_drop = utils.get_av_model(patterns_list) |
|
for n in range(len(segments)): |
|
labeled_drop = data[self.idrops[n] - self.state['WINDOW_SIZE']: self.idrops[n] + self.state['WINDOW_SIZE'] + 1] |
|
labeled_drop = labeled_drop - min(labeled_drop) |
|
auto_convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) |
|
convolve_drop = scipy.signal.fftconvolve(labeled_drop, self.model_drop) |
|
convolve_list.append(max(auto_convolve)) |
|
convolve_list.append(max(convolve_drop)) |
|
|
|
del_conv_list = [] |
|
for segment in segments: |
|
if segment['deleted']: |
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
if len(segment_data) == 0: |
|
continue |
|
flat_segment = segment_data.rolling(window = 5).mean() |
|
flat_segment_dropna = flat_segment.dropna() |
|
pdf = gaussian_kde(flat_segment_dropna) |
|
x = np.linspace(flat_segment_dropna.min() - 1, flat_segment_dropna.max() + 1, len(flat_segment_dropna)) |
|
y = pdf(x) |
|
ax_list = list(zip(x, y)) |
|
ax_list = np.array(ax_list, np.float32) |
|
antipeaks_kde = argrelextrema(np.array(ax_list), np.less)[0] |
|
segment_median = ax_list[antipeaks_kde[0], 0] |
|
cen_ind = utils.intersection_segment(flat_segment.tolist(), segment_median) #finds all interseprions with median |
|
drop_center = cen_ind[0] # or -1? test |
|
segment_cent_index = drop_center - 5 + segment_from_index |
|
deleted_drop = data[segment_cent_index - self.state['WINDOW_SIZE'] : segment_cent_index + self.state['WINDOW_SIZE'] + 1] |
|
deleted_drop = deleted_drop - min(labeled_drop) |
|
del_conv_drop = scipy.signal.fftconvolve(deleted_drop, self.model_drop) |
|
del_conv_list.append(max(del_conv_drop)) |
|
|
|
if len(confidences) > 0: |
|
self.state['confidence'] = float(min(confidences)) |
|
else: |
|
self.state['confidence'] = 1.5 |
|
|
|
if len(convolve_list) > 0: |
|
self.state['convolve_max'] = float(max(convolve_list)) |
|
else: |
|
self.state['convolve_max'] = self.state['WINDOW_SIZE'] |
|
|
|
if len(convolve_list) > 0: |
|
self.state['convolve_min'] = float(min(convolve_list)) |
|
else: |
|
self.state['convolve_min'] = self.state['WINDOW_SIZE'] |
|
|
|
if len(drop_height_list) > 0: |
|
self.state['DROP_HEIGHT'] = int(min(drop_height_list)) |
|
else: |
|
self.state['DROP_HEIGHT'] = 1 |
|
|
|
if len(drop_length_list) > 0: |
|
self.state['DROP_LENGTH'] = int(max(drop_length_list)) |
|
else: |
|
self.state['DROP_LENGTH'] = 1 |
|
|
|
if len(del_conv_list) > 0: |
|
self.state['conv_del_min'] = float(min(del_conv_list)) |
|
else: |
|
self.state['conv_del_min'] = self.state['WINDOW_SIZE'] |
|
|
|
if len(del_conv_list) > 0: |
|
self.state['conv_del_max'] = float(max(del_conv_list)) |
|
else: |
|
self.state['conv_del_max'] = self.state['WINDOW_SIZE'] |
|
|
|
def do_predict(self, dataframe: pd.DataFrame) -> list: |
|
data = dataframe['value'] |
|
possible_drops = utils.find_drop(data, self.state['DROP_HEIGHT'], self.state['DROP_LENGTH'] + 1) |
|
|
|
return self.__filter_prediction(possible_drops, data) |
|
|
|
def __filter_prediction(self, segments: list, data: list): |
|
delete_list = [] |
|
variance_error = self.state['WINDOW_SIZE'] |
|
close_patterns = utils.close_filtering(segments, variance_error) |
|
segments = utils.best_pat(close_patterns, data, 'min') |
|
if len(segments) == 0 or len(self.idrops) == 0 : |
|
segments = [] |
|
return segments |
|
pattern_data = self.model_drop |
|
for segment in segments: |
|
if segment > self.state['WINDOW_SIZE'] and segment < (len(data) - self.state['WINDOW_SIZE']): |
|
convol_data = data[segment - self.state['WINDOW_SIZE'] : segment + self.state['WINDOW_SIZE'] + 1] |
|
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
|
upper_bound = self.state['convolve_max'] * 1.2 |
|
lower_bound = self.state['convolve_min'] * 0.8 |
|
delete_up_bound = self.state['conv_del_max'] * 1.02 |
|
delete_low_bound = self.state['conv_del_min'] * 0.98 |
|
try: |
|
if max(conv) > upper_bound or max(conv) < lower_bound: |
|
delete_list.append(segment) |
|
elif max(conv) < delete_up_bound and max(conv) > delete_low_bound: |
|
delete_list.append(segment) |
|
except ValueError: |
|
delete_list.append(segment) |
|
else: |
|
delete_list.append(segment) |
|
|
|
for item in delete_list: |
|
segments.remove(item) |
|
|
|
return set(segments)
|
|
|