You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
114 lines
4.3 KiB
114 lines
4.3 KiB
from models import Model, AnalyticUnitCache |
|
|
|
import scipy.signal |
|
from scipy.fftpack import fft |
|
from scipy.signal import argrelextrema |
|
|
|
import utils |
|
import numpy as np |
|
import pandas as pd |
|
from typing import Optional |
|
|
|
WINDOW_SIZE = 240 |
|
|
|
class TroughModel(Model): |
|
|
|
def __init__(self): |
|
super() |
|
self.segments = [] |
|
self.ipeaks = [] |
|
self.state = { |
|
'confidence': 1.5, |
|
'convolve_max': 570000 |
|
} |
|
|
|
def fit(self, dataframe: pd.DataFrame, segments: list, cache: Optional[AnalyticUnitCache]) -> AnalyticUnitCache: |
|
if type(cache) is AnalyticUnitCache: |
|
self.state = cache |
|
|
|
self.segments = segments |
|
data = dataframe['value'] |
|
|
|
confidences = [] |
|
convolve_list = [] |
|
for segment in segments: |
|
if segment['labeled']: |
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
if len(segment_data) == 0: |
|
continue |
|
segment_min = min(segment_data) |
|
segment_max = max(segment_data) |
|
confidences.append(0.2 * (segment_max - segment_min)) |
|
flat_segment = segment_data.rolling(window=5).mean() |
|
flat_segment = flat_segment.dropna() |
|
segment_min_index = flat_segment.idxmin() #+ segment['start'] |
|
self.ipeaks.append(segment_min_index) |
|
labeled_drop = data[segment_min_index - WINDOW_SIZE : segment_min_index + WINDOW_SIZE] |
|
labeled_min = min(labeled_drop) |
|
for value in labeled_drop: |
|
value = value - labeled_min |
|
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) |
|
convolve_list.append(max(convolve)) |
|
|
|
if len(confidences) > 0: |
|
self.state['confidence'] = float(min(confidences)) |
|
else: |
|
self.state['confidence'] = 1.5 |
|
|
|
if len(convolve_list) > 0: |
|
self.state['convolve_max'] = float(max(convolve_list)) |
|
else: |
|
self.state['convolve_max'] = 570000 |
|
|
|
return self.state |
|
|
|
def do_predict(self, dataframe: pd.DataFrame): |
|
data = dataframe['value'] |
|
window_size = 24 |
|
all_max_flatten_data = data.rolling(window=window_size).mean() |
|
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0] |
|
|
|
extrema_list = [] |
|
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.02): |
|
extrema_list.append(i) |
|
|
|
segments = [] |
|
for i in all_mins: |
|
if all_max_flatten_data[i] < extrema_list[i]: |
|
segments.append(i) |
|
|
|
filtered = self.__filter_prediction(segments, data) |
|
return [(dataframe['timestamp'][x - 1].value, dataframe['timestamp'][x + 1].value) for x in filtered] |
|
|
|
def __filter_prediction(self, segments: list, all_max_flatten_data: list): |
|
delete_list = [] |
|
variance_error = int(0.004 * len(all_max_flatten_data)) |
|
if variance_error > 100: |
|
variance_error = 100 |
|
for i in range(1, len(segments)): |
|
if segments[i] < segments[i - 1] + variance_error: |
|
delete_list.append(segments[i]) |
|
for item in delete_list: |
|
segments.remove(item) |
|
|
|
delete_list = [] |
|
if len(segments) == 0 or len(self.ipeaks) == 0 : |
|
segments = [] |
|
return segments |
|
|
|
pattern_data = all_max_flatten_data[self.ipeaks[0] - WINDOW_SIZE : self.ipeaks[0] + WINDOW_SIZE] |
|
for segment in segments: |
|
if segment > WINDOW_SIZE: |
|
convol_data = all_max_flatten_data[segment - WINDOW_SIZE : segment + WINDOW_SIZE] |
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
|
if max(conv) > self.state['convolve_max'] * 1.2 or max(conv) < self.state['convolve_max'] * 0.8: |
|
delete_list.append(segment) |
|
else: |
|
delete_list.append(segment) |
|
for item in delete_list: |
|
segments.remove(item) |
|
|
|
return segments
|
|
|