You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1.5 KiB

Hastic server

Implementation of basic pattern recognition and unsupervised learning for anomaly detection.

Implementation of analytic unit for Hastic.

See also:

  • Hooks - notifications about events
  • REST - for developing your plugins
  • HasticPanel - Hastic plugin for Grafana

Build & run

Server needs Grafana's API key (http://<your_grafana_url>/org/apikeys) to query data from Grafana datasources. API key role needs only Viewer access.

Docker

Example of running hastic-server in Docker:

docker build -t hastic-server .
docker run -d --name hastic-server -p 80:8000 -e HASTIC_API_KEY=<your_grafana_api_key> hastic-server

Linux

Environment variables

You can export following environment variables for hastic-server to use:

  • HASTIC_API_KEY - (required) API-key of your Grafana instance
  • HASTIC_PORT - (optional) port you want to run server on, default: 8000

Dependencies

You need in your system:

Intallation

pip3 install pandas seglearn scipy tsfresh

git clone https://github.com/hastic/hastic-server.git
cd ./hastic-server/server
npm install 
npm run build

Run

$ export HASTIC_API_KEY=<your_grafana_api_key>
$ export HASTIC_PORT=<port_you_want_to_run_server_on>

cd ./hastic-server/server
npm start