You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
61 lines
2.2 KiB
61 lines
2.2 KiB
import pickle |
|
from tsfresh.transformers.feature_selector import FeatureSelector |
|
from sklearn.preprocessing import MinMaxScaler |
|
from sklearn.ensemble import IsolationForest |
|
import pandas as pd |
|
|
|
|
|
class SupervisedAlgorithm(object): |
|
frame_size = 16 |
|
good_features = [ |
|
#"value__agg_linear_trend__f_agg_\"max\"__chunk_len_5__attr_\"intercept\"", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_20", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_5", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_10", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_20", |
|
# "value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_20", |
|
# "value__fft_coefficient__coeff_3__attr_\"abs\"", |
|
"time_of_day_column_x", |
|
"time_of_day_column_y", |
|
"value__abs_energy", |
|
# "value__absolute_sum_of_changes", |
|
# "value__sum_of_reoccurring_data_points", |
|
] |
|
clf = None |
|
scaler = None |
|
|
|
def __init__(self): |
|
self.features = [] |
|
self.col_to_max, self.col_to_min, self.col_to_median = None, None, None |
|
self.augmented_path = None |
|
|
|
async def fit(self, dataset, contamination=0.005): |
|
dataset = dataset[self.good_features] |
|
dataset = dataset[-100000:] |
|
|
|
self.scaler = MinMaxScaler(feature_range=(-1, 1)) |
|
# self.clf = svm.OneClassSVM(nu=contamination, kernel="rbf", gamma=0.1) |
|
self.clf = IsolationForest(contamination=contamination) |
|
|
|
self.scaler.fit(dataset) |
|
|
|
dataset = self.scaler.transform(dataset) |
|
self.clf.fit(dataset) |
|
|
|
async def predict(self, dataframe): |
|
dataset = dataframe[self.good_features] |
|
dataset = self.scaler.transform(dataset) |
|
prediction = self.clf.predict(dataset) |
|
|
|
# for i in range(len(dataset)): |
|
# print(str(dataset[i]) + " " + str(prediction[i])) |
|
|
|
prediction = [x < 0.0 for x in prediction] |
|
return pd.Series(prediction, index=dataframe.index) |
|
|
|
def __select_features(self, x, y): |
|
# feature_selector = FeatureSelector() |
|
feature_selector = FeatureSelector() |
|
|
|
feature_selector.fit(x, y) |
|
return feature_selector.relevant_features
|
|
|