You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
2.3 KiB
70 lines
2.3 KiB
from typing import Dict |
|
import pandas as pd |
|
import logging, traceback |
|
|
|
import detectors |
|
from analytic_unit_worker import AnalyticUnitWorker |
|
|
|
logger = logging.getLogger('AnalyticUnitManager') |
|
|
|
AnalyticUnitId = str |
|
analytic_workers: Dict[AnalyticUnitId, AnalyticUnitWorker] = dict() |
|
|
|
|
|
def get_detector_by_type(analytic_unit_type) -> detectors.Detector: |
|
if analytic_unit_type == 'GENERAL': |
|
detector = detectors.GeneralDetector() |
|
else: |
|
detector = detectors.PatternDetector(analytic_unit_type) |
|
return detector |
|
|
|
def ensure_worker(analytic_unit_id, analytic_unit_type) -> AnalyticUnitWorker: |
|
if analytic_unit_id in analytic_workers: |
|
# TODO: check that type is the same |
|
return analytic_workers[analytic_unit_id] |
|
detector = get_detector_by_type(analytic_unit_type) |
|
worker = AnalyticUnitWorker(analytic_unit_id, detector) |
|
analytic_workers[analytic_unit_id] = worker |
|
return worker |
|
|
|
async def handle_analytic_task(task): |
|
try: |
|
payload = task['payload'] |
|
|
|
worker = ensure_worker(task['analyticUnitId'], payload['pattern']) |
|
|
|
data = prepare_data(payload['data']) |
|
result_payload = {} |
|
if task['type'] == 'LEARN': |
|
result_payload = await worker.do_learn(payload['segments'], data, payload['cache']) |
|
elif task['type'] == 'PREDICT': |
|
result_payload = await worker.do_predict(data, payload['cache']) |
|
else: |
|
raise ValueError('Unknown task type "%s"' % task['type']) |
|
return { |
|
'status': 'SUCCESS', |
|
'payload': result_payload |
|
} |
|
|
|
except Exception as e: |
|
error_text = traceback.format_exc() |
|
logger.error("handle_analytic_task exception: '%s'" % error_text) |
|
# TODO: move result to a class which renders to json for messaging to analytics |
|
return { |
|
'status': 'FAILED', |
|
'error': str(e) |
|
} |
|
|
|
def prepare_data(data: list): |
|
""" |
|
Takes list |
|
- converts it into pd.DataFrame, |
|
- converts 'timestamp' column to pd.Datetime, |
|
- subtracts min value from dataset |
|
""" |
|
data = pd.DataFrame(data, columns=['timestamp', 'value']) |
|
|
|
data['timestamp'] = pd.to_datetime(data['timestamp']) |
|
data['value'] = data['value'] - min(data['value']) |
|
|
|
return data
|
|
|