You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

102 lines
3.5 KiB

import scipy.signal
from scipy.fftpack import fft
from scipy.signal import argrelextrema
import utils
import numpy as np
import pickle
class StepDetector:
def __init__(self):
self.segments = []
self.confidence = 1.5
self.convolve_max = 570000
async def fit(self, dataframe, segments):
data = dataframe['value']
confidences = []
convolve_list = []
for segment in segments:
if segment['labeled']:
segment_data = data[segment['start'] : segment['finish'] + 1]
segment_min = min(segment_data)
segment_max = max(segment_data)
confidences.append(0.20 * (segment_max - segment_min))
flat_segment = segment_data.rolling(window=5).mean()
segment_min_index = flat_segment.idxmin() - 5
labeled_drop = data[segment_min_index - 120 : segment_min_index + 120]
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
convolve_list.append(max(convolve))
if len(confidences) > 0:
self.confidence = min(confidences)
else:
self.confidence = 1.5
if len(convolve_list) > 0:
self.convolve_max = max(convolve_list)
else:
self.convolve_max = 570000
async def predict(self, dataframe):
data = dataframe['value']
result = await self.__predict(data)
result.sort()
if len(self.segments) > 0:
result = [segment for segment in result if not utils.is_intersect(segment, self.segments)]
return result
async def __predict(self, data):
window_size = 24
all_max_flatten_data = data.rolling(window=window_size).mean()
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
extrema_list = []
for i in utils.exponential_smoothing(data - self.confidence, 0.03):
extrema_list.append(i)
segments = []
for i in all_mins:
if all_max_flatten_data[i] < extrema_list[i]:
segments.append(i - window_size)
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)]
def __filter_prediction(self, segments, all_max_flatten_data):
delete_list = []
variance_error = int(0.004 * len(all_max_flatten_data))
if variance_error > 200:
variance_error = 200
for i in range(1, len(segments)):
if segments[i] < segments[i - 1] + variance_error:
delete_list.append(segments[i])
for item in delete_list:
segments.remove(item)
delete_list = []
pattern_data = all_max_flatten_data[segments[0] - 120 : segments[0] + 120]
for segment in segments:
convol_data = all_max_flatten_data[segment - 120 : segment + 120]
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9:
delete_list.append(segment)
for item in delete_list:
segments.remove(item)
return segments
def save(self, model_filename):
with open(model_filename, 'wb') as file:
pickle.dump((self.confidence, self.convolve_max), file)
def load(self, model_filename):
try:
with open(model_filename, 'rb') as file:
(self.confidence, self.convolve_max) = pickle.load(file)
except:
pass