You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
5.8 KiB
144 lines
5.8 KiB
from models import Model, AnalyticUnitCache |
|
|
|
import utils |
|
import numpy as np |
|
import pandas as pd |
|
import scipy.signal |
|
from scipy.fftpack import fft |
|
from scipy.signal import argrelextrema |
|
import math |
|
from scipy.stats import gaussian_kde |
|
from scipy.stats import norm |
|
from typing import Optional |
|
|
|
|
|
WINDOW_SIZE = 400 |
|
|
|
class JumpModel(Model): |
|
|
|
def __init__(self): |
|
super() |
|
self.segments = [] |
|
self.ijumps = [] |
|
self.state = { |
|
'confidence': 1.5, |
|
'convolve_max': WINDOW_SIZE, |
|
'JUMP_HEIGHT': 1, |
|
'JUMP_LENGTH': 1, |
|
} |
|
|
|
def fit(self, dataframe: pd.DataFrame, segments: list, cache: Optional[AnalyticUnitCache]) -> AnalyticUnitCache: |
|
if type(cache) is AnalyticUnitCache: |
|
self.state = cache |
|
self.segments = segments |
|
|
|
data = dataframe['value'] |
|
confidences = [] |
|
convolve_list = [] |
|
jump_height_list = [] |
|
jump_length_list = [] |
|
for segment in segments: |
|
if segment['labeled']: |
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
if len(segment_data) == 0: |
|
continue |
|
segment_min = min(segment_data) |
|
segment_max = max(segment_data) |
|
confidences.append(0.20 * (segment_max - segment_min)) |
|
flat_segment = segment_data.rolling(window=5).mean() |
|
flat_segment_dropna = flat_segment.dropna() |
|
pdf = gaussian_kde(flat_segment_dropna) |
|
x = np.linspace(flat_segment_dropna.min() - 1, flat_segment_dropna.max() + 1, len(flat_segment_dropna)) |
|
y = pdf(x) |
|
ax_list = [] |
|
for i in range(len(x)): |
|
ax_list.append([x[i], y[i]]) |
|
ax_list = np.array(ax_list, np.float32) |
|
antipeaks_kde = argrelextrema(np.array(ax_list), np.less)[0] |
|
peaks_kde = argrelextrema(np.array(ax_list), np.greater)[0] |
|
min_peak_index = peaks_kde[0] |
|
max_peak_index = peaks_kde[1] |
|
segment_median = ax_list[antipeaks_kde[0], 0] |
|
segment_min_line = ax_list[min_peak_index, 0] |
|
segment_max_line = ax_list[max_peak_index, 0] |
|
jump_height = 0.9 * (segment_max_line - segment_min_line) |
|
jump_height_list.append(jump_height) |
|
jump_length = utils.find_jump_length(segment_data, segment_min_line, segment_max_line) |
|
jump_length_list.append(jump_length) |
|
cen_ind = utils.intersection_segment(flat_segment, segment_median) #finds all interseprions with median |
|
#cen_ind = utils.find_ind_median(segment_median, flat_segment) |
|
jump_center = cen_ind[0] |
|
segment_cent_index = jump_center - 5 + segment_from_index |
|
self.ijumps.append(segment_cent_index) |
|
labeled_drop = data[segment_cent_index - WINDOW_SIZE : segment_cent_index + WINDOW_SIZE] |
|
labeled_min = min(labeled_drop) |
|
for value in labeled_drop: |
|
value = value - labeled_min |
|
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) |
|
convolve_list.append(max(convolve)) |
|
|
|
if len(confidences) > 0: |
|
self.state['confidence'] = float(min(confidences)) |
|
else: |
|
self.state['confidence'] = 1.5 |
|
|
|
if len(convolve_list) > 0: |
|
self.state['convolve_max'] = float(max(convolve_list)) |
|
else: |
|
self.state['convolve_max'] = WINDOW_SIZE |
|
|
|
if len(jump_height_list) > 0: |
|
self.state['JUMP_HEIGHT'] = int(min(jump_height_list)) |
|
else: |
|
self.state['JUMP_HEIGHT'] = 1 |
|
|
|
if len(jump_length_list) > 0: |
|
self.state['JUMP_LENGTH'] = int(max(jump_length_list)) |
|
else: |
|
self.state['JUMP_LENGTH'] = 1 |
|
|
|
return self.state |
|
|
|
def do_predict(self, dataframe: pd.DataFrame): |
|
data = dataframe['value'] |
|
possible_jumps = utils.find_jump(data, self.state['JUMP_HEIGHT'], self.state['JUMP_LENGTH'] + 1) |
|
|
|
filtered = self.__filter_prediction(possible_jumps, data) |
|
# TODO: convert from ns to ms more proper way (not dividing by 10^6) |
|
return [(dataframe['timestamp'][x - 1].value / 1000000, dataframe['timestamp'][x + 1].value / 1000000) for x in filtered] |
|
|
|
def __filter_prediction(self, segments, data): |
|
delete_list = [] |
|
variance_error = int(0.004 * len(data)) |
|
if variance_error > 50: |
|
variance_error = 50 |
|
for i in range(1, len(segments)): |
|
if segments[i] < segments[i - 1] + variance_error: |
|
delete_list.append(segments[i]) |
|
for item in delete_list: |
|
segments.remove(item) |
|
delete_list = [] |
|
if len(segments) == 0 or len(self.ijumps) == 0 : |
|
segments = [] |
|
return segments |
|
|
|
pattern_data = data[self.ijumps[0] - WINDOW_SIZE : self.ijumps[0] + WINDOW_SIZE] |
|
for segment in segments: |
|
if segment > WINDOW_SIZE and segment < (len(data) - WINDOW_SIZE): |
|
convol_data = data[segment - WINDOW_SIZE : segment + WINDOW_SIZE] |
|
|
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
|
if max(conv) > self.state['convolve_max'] * 1.2 or max(conv) < self.state['convolve_max'] * 0.8: |
|
delete_list.append(segment) |
|
else: |
|
delete_list.append(segment) |
|
for item in delete_list: |
|
segments.remove(item) |
|
|
|
for ijump in self.ijumps: |
|
segments.append(ijump) |
|
|
|
return segments
|
|
|