You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
4.7 KiB
116 lines
4.7 KiB
import config |
|
import detectors |
|
import logging |
|
import pandas as pd |
|
from typing import Optional, Union, Generator, List, Tuple |
|
import concurrent.futures |
|
import asyncio |
|
import utils |
|
from utils import get_intersected_chunks, get_chunks, prepare_data |
|
|
|
from analytic_types import ModelCache, TimeSeries |
|
from analytic_types.detector import DetectionResult |
|
|
|
logger = logging.getLogger('AnalyticUnitWorker') |
|
|
|
|
|
class AnalyticUnitWorker: |
|
|
|
CHUNK_WINDOW_SIZE_FACTOR = 100 |
|
CHUNK_INTERSECTION_FACTOR = 2 |
|
|
|
assert CHUNK_WINDOW_SIZE_FACTOR > CHUNK_INTERSECTION_FACTOR, \ |
|
'CHUNK_INTERSECTION_FACTOR should be less than CHUNK_WINDOW_SIZE_FACTOR' |
|
|
|
def __init__(self, analytic_unit_id: str, detector: detectors.Detector, executor: concurrent.futures.Executor): |
|
self.analytic_unit_id = analytic_unit_id |
|
self._detector = detector |
|
self._executor: concurrent.futures.Executor = executor |
|
self._training_future: asyncio.Future = None |
|
|
|
async def do_train( |
|
self, payload: Union[list, dict], data: TimeSeries, cache: Optional[ModelCache] |
|
) -> Optional[ModelCache]: |
|
|
|
dataframe = prepare_data(data) |
|
|
|
cfuture: concurrent.futures.Future = self._executor.submit( |
|
self._detector.train, dataframe, payload, cache |
|
) |
|
self._training_future = asyncio.wrap_future(cfuture) |
|
try: |
|
new_cache: ModelCache = await asyncio.wait_for(self._training_future, timeout = config.LEARNING_TIMEOUT) |
|
return new_cache |
|
except asyncio.CancelledError: |
|
return None |
|
except asyncio.TimeoutError: |
|
raise Exception('Timeout ({}s) exceeded while learning'.format(config.LEARNING_TIMEOUT)) |
|
|
|
async def do_detect(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> DetectionResult: |
|
|
|
window_size = self._detector.get_window_size(cache) |
|
chunk_size = window_size * self.CHUNK_WINDOW_SIZE_FACTOR |
|
chunk_intersection = window_size * self.CHUNK_INTERSECTION_FACTOR |
|
|
|
detections: List[DetectionResult] = [] |
|
chunks = [] |
|
# XXX: get_chunks(data, chunk_size) == get_intersected_chunks(data, 0, chunk_size) |
|
if self._detector.is_detection_intersected(): |
|
chunks = get_intersected_chunks(data, chunk_intersection, chunk_size) |
|
else: |
|
chunks = get_chunks(data, chunk_size) |
|
|
|
for chunk in chunks: |
|
await asyncio.sleep(0) |
|
chunk_dataframe = prepare_data(chunk) |
|
detected: DetectionResult = self._detector.detect(chunk_dataframe, cache) |
|
detections.append(detected) |
|
|
|
if len(detections) == 0: |
|
raise RuntimeError(f'do_detect for {self.analytic_unit_id} got empty detection results') |
|
|
|
detection_result = self._detector.concat_detection_results(detections) |
|
return detection_result.to_json() |
|
|
|
def cancel(self): |
|
if self._training_future is not None: |
|
self._training_future.cancel() |
|
|
|
async def consume_data(self, data: TimeSeries, cache: Optional[ModelCache]) -> Optional[dict]: |
|
window_size = self._detector.get_window_size(cache) |
|
|
|
detections: List[DetectionResult] = [] |
|
|
|
for chunk in get_chunks(data, window_size * self.CHUNK_WINDOW_SIZE_FACTOR): |
|
await asyncio.sleep(0) |
|
chunk_dataframe = prepare_data(chunk) |
|
detected = self._detector.consume_data(chunk_dataframe, cache) |
|
if detected is not None: |
|
detections.append(detected) |
|
|
|
if len(detections) == 0: |
|
return None |
|
else: |
|
detection_result = self._detector.concat_detection_results(detections) |
|
return detection_result.to_json() |
|
|
|
async def process_data(self, data: TimeSeries, cache: ModelCache) -> dict: |
|
assert isinstance(self._detector, detectors.ProcessingDetector), \ |
|
f'{self.analytic_unit_id} detector is not ProcessingDetector, can`t process data' |
|
assert cache is not None, f'{self.analytic_unit_id} got empty cache for processing data' |
|
|
|
processed_chunks = [] |
|
window_size = self._detector.get_window_size(cache) |
|
for chunk in get_chunks(data, window_size * self.CHUNK_WINDOW_SIZE_FACTOR): |
|
await asyncio.sleep(0) |
|
chunk_dataframe = prepare_data(chunk) |
|
processed = self._detector.process_data(chunk_dataframe, cache) |
|
if processed is not None: |
|
processed_chunks.append(processed) |
|
|
|
if len(processed_chunks) == 0: |
|
raise RuntimeError(f'process_data for {self.analytic_unit_id} got empty processing results') |
|
|
|
# TODO: maybe we should process all chunks inside of detector? |
|
result = self._detector.concat_processing_results(processed_chunks) |
|
return result.to_json()
|
|
|