import models import logging import config import pandas as pd from detectors import Detector logger = logging.getLogger('PATTERN_DETECTOR') def resolve_model_by_pattern(pattern: str) -> models.Model: if pattern == 'PEAK': return models.PeaksModel() if pattern == 'DROP': return models.StepModel() if pattern == 'JUMP': return models.JumpModel() if pattern == 'CUSTOM': return models.CustomModel() raise ValueError('Unknown pattern "%s"' % pattern) class PatternDetector(Detector): def __init__(self, pattern_type): self.pattern_type = pattern_type self.model = resolve_model_by_pattern(self.pattern_type) window_size = 100 async def train(self, dataframe: pd.DataFrame, segments: list): # TODO: pass only part of dataframe that has segments self.model.fit(dataframe, segments) # TODO: save model after fit return 0 async def predict(self, dataframe: pd.DataFrame): predicted_indexes = await self.model.predict(dataframe) segments = [] # for time_value in predicted_times: # ts1 = int(time_value[0].timestamp() * 1000) # ts2 = int(time_value[1].timestamp() * 1000) # segments.append({ # 'start': min(ts1, ts2), # 'finish': max(ts1, ts2) # }) last_dataframe_time = dataframe.iloc[-1]['timestamp'] last_prediction_time = int(last_dataframe_time.timestamp() * 1000) return segments, last_prediction_time