from models import Model import scipy.signal from scipy.fftpack import fft from scipy.signal import argrelextrema import utils import numpy as np import pandas as pd SMOOTHING_COEFF = 2400 EXP_SMOOTHING_FACTOR = 0.01 class TroughModel(Model): def __init__(self): super() self.segments = [] self.itroughs = [] self.model = [] self.state = { 'confidence': 1.5, 'convolve_max': 570000, 'convolve_min': 530000, 'WINDOW_SIZE': 240, 'conv_del_min': 54000, 'conv_del_max': 55000, } def do_fit(self, dataframe: pd.DataFrame, labeled_segments: list, deleted_segments: list) -> None: data = utils.cut_dataframe(dataframe) data = data['value'] confidences = [] convolve_list = [] patterns_list = [] for segment in labeled_segments: confidence = utils.find_confidence(segment.data) confidences.append(confidence) segment_min_index = segment.data.idxmin() self.itroughs.append(segment_min_index) labeled = utils.get_interval(data, segment_min_index, self.state['WINDOW_SIZE']) labeled = utils.subtract_min_without_nan(labeled) patterns_list.append(labeled) self.model = utils.get_av_model(patterns_list) convolve_list = utils.get_convolve(self.itroughs, self.model, data, self.state['WINDOW_SIZE']) del_conv_list = [] for segment in deleted_segments: del_min_index = segment.data.idxmin() deleted = utils.get_interval(data, del_min_index, self.state['WINDOW_SIZE']) deleted = utils.subtract_min_without_nan(deleted) del_conv = scipy.signal.fftconvolve(deleted, self.model) if len(del_conv): del_conv_list.append(max(del_conv)) self._update_fiting_result(self.state, confidences, convolve_list, del_conv_list) def do_detect(self, dataframe: pd.DataFrame): data = utils.cut_dataframe(dataframe) data = data['value'] window_size = int(len(data)/SMOOTHING_COEFF) #test ws on flat data all_mins = argrelextrema(np.array(data), np.less)[0] extrema_list = [] for i in utils.exponential_smoothing(data - self.state['confidence'], EXP_SMOOTHING_FACTOR): extrema_list.append(i) segments = [] for i in all_mins: if data[i] < extrema_list[i]: segments.append(i) return self.__filter_detection(segments, data) def __filter_detection(self, segments: list, data: list) -> list: delete_list = [] variance_error = self.state['WINDOW_SIZE'] close_patterns = utils.close_filtering(segments, variance_error) segments = utils.best_pattern(close_patterns, data, 'min') if len(segments) == 0 or len(self.itroughs) == 0 : segments = [] return segments pattern_data = self.model for segment in segments: if segment > self.state['WINDOW_SIZE']: convol_data = utils.get_interval(data, segment, self.state['WINDOW_SIZE']) convol_data = utils.subtract_min_without_nan(convol_data) percent_of_nans = convol_data.isnull().sum() / len(convol_data) if percent_of_nans > 0.5: delete_list.append(segment) continue elif 0 < percent_of_nans <= 0.5: nan_list = utils.find_nan_indexes(convol_data) convol_data = utils.nan_to_zero(convol_data, nan_list) pattern_data = utils.nan_to_zero(pattern_data, nan_list) conv = scipy.signal.fftconvolve(convol_data, pattern_data) if max(conv) > self.state['convolve_max'] * 1.1 or max(conv) < self.state['convolve_min'] * 0.9: delete_list.append(segment) elif max(conv) < self.state['conv_del_max'] * 1.02 and max(conv) > self.state['conv_del_min'] * 0.98: delete_list.append(segment) else: delete_list.append(segment) for item in delete_list: segments.remove(item) return set(segments)