import unittest import pandas as pd from detectors import pattern_detector, threshold_detector, anomaly_detector class TestPatternDetector(unittest.TestCase): def test_small_dataframe(self): data = [[0,1], [1,2]] dataframe = pd.DataFrame(data, columns=['timestamp', 'values']) cache = {'windowSize': 10} detector = pattern_detector.PatternDetector('GENERAL', 'test_id') with self.assertRaises(ValueError): detector.detect(dataframe, cache) class TestThresholdDetector(unittest.TestCase): def test_invalid_cache(self): detector = threshold_detector.ThresholdDetector() with self.assertRaises(ValueError): detector.detect([], None) with self.assertRaises(ValueError): detector.detect([], {}) class TestAnomalyDetector(unittest.TestCase): def test_dataframe(self): data_val = [0, 1, 2, 1, 2, 10, 1, 2, 1] data_ind = [1523889000000 + i for i in range(len(data_val))] data = {'timestamp': data_ind, 'value': data_val} dataframe = pd.DataFrame(data = data) dataframe['timestamp'] = pd.to_datetime(dataframe['timestamp'], unit='ms') cache = { 'confidence': 2, 'alpha': 0.1, } detector = anomaly_detector.AnomalyDetector() detect_result = detector.detect(dataframe, cache) result = [(1523889000005.0, 1523889000005.0)] self.assertEqual(result, detect_result.segments)