from models import Model, AnalyticUnitCache import scipy.signal from scipy.fftpack import fft from scipy.signal import argrelextrema from scipy.stats import gaussian_kde import utils import numpy as np import pandas as pd from typing import Optional WINDOW_SIZE = 200 class DropModel(Model): def __init__(self): super() self.segments = [] self.idrops = [] self.state = { 'confidence': 1.5, 'convolve_max': WINDOW_SIZE, 'DROP_HEIGHT': 1, 'DROP_LENGTH': 1, } def fit(self, dataframe: pd.DataFrame, segments: list, cache: Optional[AnalyticUnitCache]) -> AnalyticUnitCache: if type(cache) is AnalyticUnitCache: self.state = cache self.segments = segments data = dataframe['value'] confidences = [] convolve_list = [] drop_height_list = [] drop_length_list = [] for segment in segments: if segment['labeled']: segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) segment_data = data[segment_from_index: segment_to_index + 1] if len(segment_data) == 0: continue segment_min = min(segment_data) segment_max = max(segment_data) confidences.append(0.20 * (segment_max - segment_min)) flat_segment = segment_data.rolling(window=5).mean() pdf = gaussian_kde(flat_segment.dropna()) x = np.linspace(flat_segment.dropna().min(), flat_segment.dropna().max(), len(flat_segment.dropna())) y = pdf(x) ax_list = [] for i in range(len(x)): ax_list.append([x[i], y[i]]) ax_list = np.array(ax_list, np.float32) antipeaks_kde = argrelextrema(np.array(ax_list), np.less)[0] peaks_kde = argrelextrema(np.array(ax_list), np.greater)[0] min_peak_index = peaks_kde[0] max_peak_index = peaks_kde[1] segment_median = ax_list[antipeaks_kde[0], 0] segment_min_line = ax_list[min_peak_index, 0] segment_max_line = ax_list[max_peak_index, 0] drop_height = 0.95 * (segment_max_line - segment_min_line) drop_height_list.append(drop_height) drop_length = utils.find_drop_length(segment_data, segment_min_line, segment_max_line) drop_length_list.append(drop_length) cen_ind = utils.drop_intersection(flat_segment, segment_median) #finds all interseprions with median drop_center = cen_ind[0] segment_cent_index = drop_center - 5 + segment_from_index self.idrops.append(segment_cent_index) labeled_drop = data[segment_cent_index - WINDOW_SIZE : segment_cent_index + WINDOW_SIZE] labeled_min = min(labeled_drop) for value in labeled_drop: value = value - labeled_min convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) convolve_list.append(max(convolve)) if len(confidences) > 0: self.state['confidence'] = float(min(confidences)) else: self.state['confidence'] = 1.5 if len(convolve_list) > 0: self.state['convolve_max'] = float(max(convolve_list)) else: self.state['convolve_max'] = WINDOW_SIZE if len(drop_height_list) > 0: self.state['DROP_HEIGHT'] = int(min(drop_height_list)) else: self.state['DROP_HEIGHT'] = 1 if len(drop_length_list) > 0: self.state['DROP_LENGTH'] = int(max(drop_length_list)) else: self.state['DROP_LENGTH'] = 1 return self.state def do_predict(self, dataframe: pd.DataFrame) -> list: data = dataframe['value'] possible_drops = utils.find_drop(data, self.state['DROP_HEIGHT'], self.state['DROP_LENGTH'] + 1) filtered = self.__filter_prediction(possible_drops, data) # TODO: convert from ns to ms more proper way (not dividing by 10^6) return [(dataframe['timestamp'][x - 1].value / 1000000, dataframe['timestamp'][x + 1].value / 1000000) for x in filtered] def __filter_prediction(self, segments: list, data: list): delete_list = [] variance_error = int(0.004 * len(data)) if variance_error > 50: variance_error = 50 for i in range(1, len(segments)): if segments[i] < segments[i - 1] + variance_error: delete_list.append(segments[i]) # for item in delete_list: # segments.remove(item) delete_list = [] if len(segments) == 0 or len(self.idrops) == 0 : segments = [] return segments pattern_data = data[self.idrops[0] - WINDOW_SIZE : self.idrops[0] + WINDOW_SIZE] for segment in segments: if segment > WINDOW_SIZE and segment < (len(data) - WINDOW_SIZE): convol_data = data[segment - WINDOW_SIZE : segment + WINDOW_SIZE] conv = scipy.signal.fftconvolve(pattern_data, convol_data) if conv[WINDOW_SIZE*2] > self.state['convolve_max'] * 1.2 or conv[WINDOW_SIZE*2] < self.state['convolve_max'] * 0.8: delete_list.append(segment) else: delete_list.append(segment) # TODO: implement filtering # for item in delete_list: # segments.remove(item) return set(segments)