from models import Model import scipy.signal from scipy.fftpack import fft from scipy.signal import argrelextrema from scipy.stats import gaussian_kde import utils import numpy as np import pandas as pd class DropModel(Model): def __init__(self): super() self.segments = [] self.state = { 'idrops': [], 'model_drop': [], 'confidence': 1.5, 'convolve_max': 200, 'convolve_min': 200, 'DROP_HEIGHT': 1, 'DROP_LENGTH': 1, 'WINDOW_SIZE': 240, 'conv_del_min': 54000, 'conv_del_max': 55000, } def get_model_type(self) -> (str, bool): model = 'drop' type_model = False return (model, type_model) def find_segment_center(self, dataframe: pd.DataFrame, start: int, end: int) -> int: data = dataframe['value'] segment = data[start: end] segment_center_index = utils.find_pattern_center(segment, start, 'drop') return segment_center_index def do_fit(self, dataframe: pd.DataFrame, labeled_segments: list, deleted_segments: list, learning_info: dict) -> None: data = utils.cut_dataframe(dataframe) data = data['value'] window_size = self.state['WINDOW_SIZE'] self.state['idrops'] = learning_info['segment_center_list'] self.state['model_drop'] = utils.get_av_model(learning_info['patterns_list']) convolve_list = utils.get_convolve(self.state['idrops'], self.state['model_drop'], data, window_size) correlation_list = utils.get_correlation(self.state['idrops'], self.state['model_drop'], data, window_size) del_conv_list = [] delete_pattern_timestamp = [] for segment in deleted_segments: segment_cent_index = segment.center_index delete_pattern_timestamp.append(segment.pattern_timestamp) deleted_drop = utils.get_interval(data, segment_cent_index, window_size) deleted_drop = utils.subtract_min_without_nan(deleted_drop) del_conv_drop = scipy.signal.fftconvolve(deleted_drop, self.state['model_drop']) if len(del_conv_drop): del_conv_list.append(max(del_conv_drop)) self._update_fiting_result(self.state, learning_info['confidence'], convolve_list, del_conv_list) self.state['DROP_HEIGHT'] = int(min(learning_info['pattern_height'], default = 1)) self.state['DROP_LENGTH'] = int(max(learning_info['pattern_width'], default = 1)) def do_detect(self, dataframe: pd.DataFrame) -> list: data = utils.cut_dataframe(dataframe) data = data['value'] possible_drops = utils.find_drop(data, self.state['DROP_HEIGHT'], self.state['DROP_LENGTH'] + 1) return self.__filter_detection(possible_drops, data) def __filter_detection(self, segments: list, data: list): delete_list = [] variance_error = self.state['WINDOW_SIZE'] close_patterns = utils.close_filtering(segments, variance_error) segments = utils.best_pattern(close_patterns, data, 'min') if len(segments) == 0 or len(self.state['idrops']) == 0 : segments = [] return segments pattern_data = self.state['model_drop'] for segment in segments: if segment > self.state['WINDOW_SIZE'] and segment < (len(data) - self.state['WINDOW_SIZE']): convol_data = utils.get_interval(data, segment, self.state['WINDOW_SIZE']) percent_of_nans = convol_data.isnull().sum() / len(convol_data) if len(convol_data) == 0 or percent_of_nans > 0.5: delete_list.append(segment) continue elif 0 < percent_of_nans <= 0.5: nan_list = utils.find_nan_indexes(convol_data) convol_data = utils.nan_to_zero(convol_data, nan_list) pattern_data = utils.nan_to_zero(pattern_data, nan_list) conv = scipy.signal.fftconvolve(convol_data, pattern_data) upper_bound = self.state['convolve_max'] * 1.2 lower_bound = self.state['convolve_min'] * 0.8 delete_up_bound = self.state['conv_del_max'] * 1.02 delete_low_bound = self.state['conv_del_min'] * 0.98 try: if max(conv) > upper_bound or max(conv) < lower_bound: delete_list.append(segment) elif max(conv) < delete_up_bound and max(conv) > delete_low_bound: delete_list.append(segment) except ValueError: delete_list.append(segment) else: delete_list.append(segment) for item in delete_list: segments.remove(item) return set(segments)