import models import logging import config import pandas as pd from typing import Optional from detectors import Detector logger = logging.getLogger('PATTERN_DETECTOR') def resolve_model_by_pattern(pattern: str) -> models.Model: if pattern == 'GENERAL': return models.GeneralModel() if pattern == 'PEAK': return models.PeakModel() if pattern == 'TROUGH': return models.TroughModel() if pattern == 'DROP': return models.DropModel() if pattern == 'JUMP': return models.JumpModel() if pattern == 'CUSTOM': return models.CustomModel() raise ValueError('Unknown pattern "%s"' % pattern) class PatternDetector(Detector): def __init__(self, pattern_type): self.pattern_type = pattern_type self.model = resolve_model_by_pattern(self.pattern_type) window_size = 100 async def train(self, dataframe: pd.DataFrame, segments: list, cache: Optional[models.AnalyticUnitCache]) -> models.AnalyticUnitCache: # TODO: pass only part of dataframe that has segments new_cache = self.model.fit(dataframe, segments, cache) return { 'cache': new_cache } async def predict(self, dataframe: pd.DataFrame, cache: Optional[models.AnalyticUnitCache]) -> dict: # TODO: split and sleep (https://github.com/hastic/hastic-server/pull/124#discussion_r214085643) predicted = self.model.predict(dataframe, cache) segments = [{ 'from': segment[0], 'to': segment[1] } for segment in predicted['segments']] newCache = predicted['cache'] last_dataframe_time = dataframe.iloc[-1]['timestamp'] last_prediction_time = last_dataframe_time.value return { 'cache': newCache, 'segments': segments, 'lastPredictionTime': last_prediction_time }