import sys ANALYTICS_PATH = '../analytics' TESTS_PATH = '../tests' sys.path.extend([ANALYTICS_PATH, TESTS_PATH]) import pandas as pd import numpy as np import utils import models import test_dataset # TODO: get_dataset # TODO: get_segment PEAK_DATASETS = [] # dataset with 3 peaks TEST_DATA = test_dataset.create_dataframe([0, 3, 5, 7, 5, 3, 0, 0, 1, 0, 1, 4, 6, 8, 6, 4, 1, 0, 0, 0, 1, 0, 3, 5, 7, 5, 3, 0, 1, 1]) POSITIVE_SEGMENTS = [(1523889000000, 1523889000006), (1523889000021, 1523889000027)] NEGATIVE_SEGMENTS = [(1523889000009, 1523889000017)] class Segment(): def __init__(self, start: int, end: int, labeled: bool): self.start = start self.end = end self.labeled = labeled def get_segment(self): return { '_id': 'q', 'analyticUnitId': 'q', 'from': self.start, 'to': self.end, 'labeled': self.labeled, 'deleted': not self.labeled } class Metric(): def __init__(self, true_result, model_result): self.true_result = true_result self.model_result = model_result['segments'] def get_amount(self): return len(self.model_result) / len(self.true_result) def get_accuracy(self): correct_segment = 0 invalid_segment = 0 for segment in self.model_result: current_cs = correct_segment for pattern in self.true_result: if pattern[0] <= segment[0] and pattern[1] >= segment[1]: correct_segment += 1 break if correct_segment == current_cs: invalid_segment += 1 non_detected = len(self.true_result) - correct_segment return (correct_segment, invalid_segment, non_detected) class ModelData(): def __init__(self, frame: pd.DataFrame, positive_segments, negative_segments, model_type: str): self.frame = frame self.positive_segments = positive_segments self.negative_segments = negative_segments self.model_type = model_type def get_segments_for_detection(self, positive_amount, negative_amount): segments = [] for idx, bounds in enumerate(self.positive_segments): if idx >= positive_amount: break segments.append(Segment(bounds[0], bounds[1], True).get_segment()) for idx, bounds in enumerate(self.negative_segments): if idx >= negative_amount: break segments.append(Segment(bounds[0], bounds[1], False).get_segment()) return segments def get_all_correct_segments(self): return self.positive_segments PEAK_DATA_1 = ModelData(TEST_DATA, POSITIVE_SEGMENTS, NEGATIVE_SEGMENTS, 'peak') PEAK_DATASETS.append(PEAK_DATA_1) def main(model_type: str) -> None: table_metric = [] if model_type == 'peak': for data in PEAK_DATASETS: dataset = data.frame segments = data.get_segments_for_detection(1, 0) model = models.PeakModel() cache = model.fit(dataset, segments, 'test', {}) detect_result = model.detect(dataset, 'test', cache) peak_metric = Metric(data.get_all_correct_segments(), detect_result) table_metric.append((peak_metric.get_amount(), peak_metric.get_accuracy())) return table_metric if __name__ == '__main__': ''' This tool applies the model on datasets and verifies that the detection result corresponds to the correct values. sys.argv[1] expects one of the models name -> see correct_name ''' # TODO: use enum correct_name = ['peak', 'trough', 'jump', 'drop', 'general'] if len(sys.argv) < 2: print('Enter one of models name: {}'.format(correct_name)) sys.exit(1) model_type = str(sys.argv[1]).lower() if model_type in correct_name: print(main(model_type)) else: print('Enter one of models name: {}'.format(correct_name))