|
|
@ -39,7 +39,7 @@ class DropModel(Model): |
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) |
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1] |
|
|
|
|
|
|
|
|
|
|
|
if len(segment_data) == 0: |
|
|
|
if len(segment_data) == 0: |
|
|
|
continue |
|
|
|
continue |
|
|
|
segment_min = min(segment_data) |
|
|
|
segment_min = min(segment_data) |
|
|
@ -80,7 +80,7 @@ class DropModel(Model): |
|
|
|
convolve_drop = scipy.signal.fftconvolve(labeled_drop, self.model_drop) |
|
|
|
convolve_drop = scipy.signal.fftconvolve(labeled_drop, self.model_drop) |
|
|
|
convolve_list.append(max(auto_convolve)) |
|
|
|
convolve_list.append(max(auto_convolve)) |
|
|
|
convolve_list.append(max(convolve_drop)) |
|
|
|
convolve_list.append(max(convolve_drop)) |
|
|
|
|
|
|
|
|
|
|
|
del_conv_list = [] |
|
|
|
del_conv_list = [] |
|
|
|
for segment in segments: |
|
|
|
for segment in segments: |
|
|
|
if segment['deleted']: |
|
|
|
if segment['deleted']: |
|
|
@ -106,7 +106,7 @@ class DropModel(Model): |
|
|
|
deleted_drop = data[segment_cent_index - self.state['WINDOW_SIZE'] : segment_cent_index + self.state['WINDOW_SIZE'] + 1] |
|
|
|
deleted_drop = data[segment_cent_index - self.state['WINDOW_SIZE'] : segment_cent_index + self.state['WINDOW_SIZE'] + 1] |
|
|
|
deleted_drop = deleted_drop - min(labeled_drop) |
|
|
|
deleted_drop = deleted_drop - min(labeled_drop) |
|
|
|
del_conv_drop = scipy.signal.fftconvolve(deleted_drop, self.model_drop) |
|
|
|
del_conv_drop = scipy.signal.fftconvolve(deleted_drop, self.model_drop) |
|
|
|
del_conv_list.append(max(del_conv_drop)) |
|
|
|
del_conv_list.append(max(del_conv_drop)) |
|
|
|
|
|
|
|
|
|
|
|
if len(confidences) > 0: |
|
|
|
if len(confidences) > 0: |
|
|
|
self.state['confidence'] = float(min(confidences)) |
|
|
|
self.state['confidence'] = float(min(confidences)) |
|
|
@ -117,7 +117,7 @@ class DropModel(Model): |
|
|
|
self.state['convolve_max'] = float(max(convolve_list)) |
|
|
|
self.state['convolve_max'] = float(max(convolve_list)) |
|
|
|
else: |
|
|
|
else: |
|
|
|
self.state['convolve_max'] = self.state['WINDOW_SIZE'] |
|
|
|
self.state['convolve_max'] = self.state['WINDOW_SIZE'] |
|
|
|
|
|
|
|
|
|
|
|
if len(convolve_list) > 0: |
|
|
|
if len(convolve_list) > 0: |
|
|
|
self.state['convolve_min'] = float(min(convolve_list)) |
|
|
|
self.state['convolve_min'] = float(min(convolve_list)) |
|
|
|
else: |
|
|
|
else: |
|
|
@ -132,12 +132,12 @@ class DropModel(Model): |
|
|
|
self.state['DROP_LENGTH'] = int(max(drop_length_list)) |
|
|
|
self.state['DROP_LENGTH'] = int(max(drop_length_list)) |
|
|
|
else: |
|
|
|
else: |
|
|
|
self.state['DROP_LENGTH'] = 1 |
|
|
|
self.state['DROP_LENGTH'] = 1 |
|
|
|
|
|
|
|
|
|
|
|
if len(del_conv_list) > 0: |
|
|
|
if len(del_conv_list) > 0: |
|
|
|
self.state['conv_del_min'] = float(min(del_conv_list)) |
|
|
|
self.state['conv_del_min'] = float(min(del_conv_list)) |
|
|
|
else: |
|
|
|
else: |
|
|
|
self.state['conv_del_min'] = self.state['WINDOW_SIZE'] |
|
|
|
self.state['conv_del_min'] = self.state['WINDOW_SIZE'] |
|
|
|
|
|
|
|
|
|
|
|
if len(del_conv_list) > 0: |
|
|
|
if len(del_conv_list) > 0: |
|
|
|
self.state['conv_del_max'] = float(max(del_conv_list)) |
|
|
|
self.state['conv_del_max'] = float(max(del_conv_list)) |
|
|
|
else: |
|
|
|
else: |
|
|
@ -172,7 +172,7 @@ class DropModel(Model): |
|
|
|
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
|
|
|
conv = scipy.signal.fftconvolve(convol_data, pattern_data) |
|
|
|
if conv[self.state['WINDOW_SIZE']*2] > self.state['convolve_max'] * 1.2 or conv[self.state['WINDOW_SIZE']*2] < self.state['convolve_min'] * 0.8: |
|
|
|
if conv[self.state['WINDOW_SIZE']*2] > self.state['convolve_max'] * 1.2 or conv[self.state['WINDOW_SIZE']*2] < self.state['convolve_min'] * 0.8: |
|
|
|
delete_list.append(segment) |
|
|
|
delete_list.append(segment) |
|
|
|
if max(conv) < self.state['conv_del_max'] * 1.02 and max(conv) > self.state['conv_del_min'] * 0.98: |
|
|
|
if max(conv) < self.state['conv_del_max'] * 1.02 and max(conv) > self.state['conv_del_min'] * 0.98: |
|
|
|
delete_list.append(segment) |
|
|
|
delete_list.append(segment) |
|
|
|
else: |
|
|
|
else: |
|
|
|
delete_list.append(segment) |
|
|
|
delete_list.append(segment) |
|
|
|