Browse Source

Make class for detection result (#634)

pull/1/head
Evgeny Smyshlyaev 6 years ago committed by rozetko
parent
commit
d1cb6f0406
  1. 1
      analytics/analytics/analytic_types/__init__.py
  2. 16
      analytics/analytics/analytic_types/detector_typing.py
  3. 3
      analytics/analytics/analytic_unit_manager.py
  4. 39
      analytics/analytics/analytic_unit_worker.py
  5. 14
      analytics/analytics/detectors/anomaly_detector.py
  6. 8
      analytics/analytics/detectors/detector.py
  7. 16
      analytics/analytics/detectors/pattern_detector.py
  8. 14
      analytics/analytics/detectors/threshold_detector.py
  9. 2
      analytics/analytics/models/__init__.py
  10. 2
      analytics/analytics/models/model.py
  11. 2
      analytics/tests/test_detectors.py

1
analytics/analytics/analytic_types/__init__.py

@ -14,6 +14,7 @@ from typing import Union, List
AnalyticUnitId = str
ModelCache = dict
"""
Example:

16
analytics/analytics/analytic_types/detector_typing.py

@ -0,0 +1,16 @@
import utils.meta
from analytic_types import ModelCache
@utils.meta.JSONClass
class DetectionResult:
def __init__(
self,
cache: ModelCache = ModelCache(),
segments: list = [],
last_detection_time: int = None
):
self.cache = cache
self.segments = segments
self.last_detection_time = last_detection_time

3
analytics/analytics/analytic_unit_manager.py

@ -4,9 +4,8 @@ import traceback
from concurrent.futures import Executor, ThreadPoolExecutor
from analytic_unit_worker import AnalyticUnitWorker
from analytic_types import AnalyticUnitId
from analytic_types import AnalyticUnitId, ModelCache
import detectors
from models import ModelCache
logger = log.getLogger('AnalyticUnitManager')

39
analytics/analytics/analytic_unit_worker.py

@ -3,12 +3,13 @@ import detectors
import logging
import pandas as pd
from typing import Optional, Union, Generator, List
from models import ModelCache
import concurrent.futures
import asyncio
import utils
from utils import get_intersected_chunks, get_chunks, prepare_data
from analytic_types import ModelCache
from analytic_types.detector_typing import DetectionResult
logger = logging.getLogger('AnalyticUnitWorker')
@ -45,39 +46,30 @@ class AnalyticUnitWorker:
except asyncio.TimeoutError:
raise Exception('Timeout ({}s) exceeded while learning'.format(config.LEARNING_TIMEOUT))
async def do_detect(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> dict:
async def do_detect(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> DetectionResult:
window_size = self._detector.get_window_size(cache)
chunk_size = window_size * self.CHUNK_WINDOW_SIZE_FACTOR
chunk_intersection = window_size * self.CHUNK_INTERSECTION_FACTOR
detection_result = {
'cache': None,
'segments': [],
'lastDetectionTime': None
}
detection_result = DetectionResult()
for chunk in get_intersected_chunks(data, chunk_intersection, chunk_size):
await asyncio.sleep(0)
chunk_dataframe = prepare_data(chunk)
detected = self._detector.detect(chunk_dataframe, cache)
self.__append_detection_result(detection_result, detected)
detection_result['segments'] = self._detector.get_intersections(detection_result['segments'])
return detection_result
detection_result.segments = self._detector.get_intersections(detection_result.segments)
return detection_result.to_json()
def cancel(self):
if self._training_future is not None:
self._training_future.cancel()
async def consume_data(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> Optional[dict]:
async def consume_data(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> Optional[DetectionResult]:
window_size = self._detector.get_window_size(cache)
#TODO: make class DetectionResult
detection_result = {
'cache': None,
'segments': [],
'lastDetectionTime': None
}
detection_result = DetectionResult()
for chunk in get_chunks(data, window_size * self.CHUNK_WINDOW_SIZE_FACTOR):
await asyncio.sleep(0)
@ -85,15 +77,16 @@ class AnalyticUnitWorker:
detected = self._detector.consume_data(chunk_dataframe, cache)
self.__append_detection_result(detection_result, detected)
detection_result['segments'] = self._detector.get_intersections(detection_result['segments'])
detection_result.segments = self._detector.get_intersections(detection_result.segments)
if detection_result['lastDetectionTime'] is None:
if detection_result.last_detection_time is None:
return None
else:
return detection_result
return detection_result.to_json()
def __append_detection_result(self, detection_result: dict, new_chunk: dict):
# TODO: move result concatenation to Detectors
def __append_detection_result(self, detection_result: DetectionResult, new_chunk: dict):
if new_chunk is not None:
detection_result['cache'] = new_chunk['cache']
detection_result['lastDetectionTime'] = new_chunk['lastDetectionTime']
detection_result['segments'].extend(new_chunk['segments'])
detection_result.cache = new_chunk.cache
detection_result.last_detection_time = new_chunk.last_detection_time
detection_result.segments.extend(new_chunk.segments)

14
analytics/analytics/detectors/anomaly_detector.py

@ -2,10 +2,10 @@ import logging
import pandas as pd
from typing import Optional, Union, List, Tuple
from analytic_types import AnalyticUnitId
from analytic_types import AnalyticUnitId, ModelCache
from analytic_types.detector_typing import DetectionResult
from analytic_types.data_bucket import DataBucket
from detectors import Detector
from models import ModelCache
import utils
MAX_DEPENDENCY_LEVEL = 100
@ -26,7 +26,7 @@ class AnomalyDetector(Detector):
}
}
def detect(self, dataframe: pd.DataFrame, cache: Optional[ModelCache]) -> dict:
def detect(self, dataframe: pd.DataFrame, cache: Optional[ModelCache]) -> DetectionResult:
data = dataframe['value']
last_values = None
if cache is not None:
@ -48,13 +48,9 @@ class AnomalyDetector(Detector):
) for segment in segments]
last_dataframe_time = dataframe.iloc[-1]['timestamp']
last_detection_time = utils.convert_pd_timestamp_to_ms(last_dataframe_time)
return {
'cache': cache,
'segments': segments,
'lastDetectionTime': last_detection_time
}
return DetectionResult(cache, segments, last_detection_time)
def consume_data(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> Optional[dict]:
def consume_data(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> Optional[DetectionResult]:
self.detect(data, cache)

8
analytics/analytics/detectors/detector.py

@ -1,8 +1,10 @@
from models import ModelCache
from abc import ABC, abstractmethod
from pandas import DataFrame
from typing import Optional, Union, List
from analytic_types import ModelCache
from analytic_types.detector_typing import DetectionResult
class Detector(ABC):
@ -14,11 +16,11 @@ class Detector(ABC):
pass
@abstractmethod
def detect(self, dataframe: DataFrame, cache: Optional[ModelCache]) -> dict:
def detect(self, dataframe: DataFrame, cache: Optional[ModelCache]) -> DetectionResult:
pass
@abstractmethod
def consume_data(self, data: DataFrame, cache: Optional[ModelCache]) -> Optional[dict]:
def consume_data(self, data: DataFrame, cache: Optional[ModelCache]) -> Optional[DetectionResult]:
pass
@abstractmethod

16
analytics/analytics/detectors/pattern_detector.py

@ -9,9 +9,9 @@ from typing import Optional, Generator, List
from detectors import Detector
from analytic_types.data_bucket import DataBucket
from models import ModelCache
from utils import convert_pd_timestamp_to_ms
from analytic_types import AnalyticUnitId
from analytic_types import AnalyticUnitId, ModelCache
from analytic_types.detector_typing import DetectionResult
logger = logging.getLogger('PATTERN_DETECTOR')
@ -45,7 +45,7 @@ class PatternDetector(Detector):
self.model = resolve_model_by_pattern(self.pattern_type)
self.bucket = DataBucket()
def train(self, dataframe: pd.DataFrame, segments: List[dict], cache: Optional[models.ModelCache]) -> models.ModelState:
def train(self, dataframe: pd.DataFrame, segments: List[dict], cache: Optional[ModelCache]) -> ModelCache:
# TODO: pass only part of dataframe that has segments
self.model.state = self.model.get_state(cache)
new_cache = self.model.fit(dataframe, segments, self.analytic_unit_id)
@ -56,7 +56,7 @@ class PatternDetector(Detector):
'cache': new_cache
}
def detect(self, dataframe: pd.DataFrame, cache: Optional[models.ModelCache]) -> dict:
def detect(self, dataframe: pd.DataFrame, cache: Optional[ModelCache]) -> DetectionResult:
logger.debug('Unit {} got {} data points for detection'.format(self.analytic_unit_id, len(dataframe)))
# TODO: split and sleep (https://github.com/hastic/hastic-server/pull/124#discussion_r214085643)
@ -82,13 +82,9 @@ class PatternDetector(Detector):
new_cache = detected['cache'].to_json()
last_dataframe_time = dataframe.iloc[-1]['timestamp']
last_detection_time = convert_pd_timestamp_to_ms(last_dataframe_time)
return {
'cache': new_cache,
'segments': segments,
'lastDetectionTime': last_detection_time
}
return DetectionResult(new_cache, segments, last_detection_time)
def consume_data(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> Optional[dict]:
def consume_data(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> Optional[DetectionResult]:
logging.debug('Start consume_data for analytic unit {}'.format(self.analytic_unit_id))
if cache is None:

14
analytics/analytics/detectors/threshold_detector.py

@ -4,8 +4,9 @@ import pandas as pd
import numpy as np
from typing import Optional, List
from analytic_types import ModelCache
from analytic_types.detector_typing import DetectionResult
from detectors import Detector
from models import ModelCache
from time import time
from utils import convert_sec_to_ms, convert_pd_timestamp_to_ms
@ -28,7 +29,7 @@ class ThresholdDetector(Detector):
}
}
def detect(self, dataframe: pd.DataFrame, cache: ModelCache) -> dict:
def detect(self, dataframe: pd.DataFrame, cache: ModelCache) -> DetectionResult:
if cache is None or cache == {}:
raise ValueError('Threshold detector error: cannot detect before learning')
if len(dataframe) == 0:
@ -68,13 +69,10 @@ class ThresholdDetector(Detector):
last_entry = dataframe.iloc[-1]
last_detection_time = convert_pd_timestamp_to_ms(last_entry['timestamp'])
return {
'cache': cache,
'segments': segments,
'lastDetectionTime': last_detection_time
}
return DetectionResult(cache, segments, last_detection_time)
def consume_data(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> Optional[dict]:
def consume_data(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> Optional[DetectionResult]:
result = self.detect(data, cache)
return result if result else None

2
analytics/analytics/models/__init__.py

@ -1,4 +1,4 @@
from models.model import Model, ModelCache, ModelState
from models.model import Model, ModelState
from models.drop_model import DropModel, DropModelState
from models.peak_model import PeakModel, PeakModelState
from models.jump_model import JumpModel, JumpModelState

2
analytics/analytics/models/model.py

@ -10,8 +10,6 @@ from analytic_types import AnalyticUnitId
import utils.meta
ModelCache = dict
class Segment(AttrDict):
def __init__(self, dataframe: pd.DataFrame, segment_map: dict, center_finder = None):

2
analytics/tests/test_detectors.py

@ -45,4 +45,4 @@ class TestAnomalyDetector(unittest.TestCase):
detector = anomaly_detector.AnomalyDetector()
detect_result = detector.detect(dataframe, cache)
result = [(1523889000005.0, 1523889000005.0)]
self.assertEqual(result, detect_result['segments'])
self.assertEqual(result, detect_result.segments)

Loading…
Cancel
Save