diff --git a/README.md b/README.md index fd2b42c..7f59521 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,7 @@ Implementation of basic pattern recognition for anomaly detection. -Implementation of analytic unit for Hastic. +Implementation of analytics unit for Hastic. See also: * [Hooks](https://github.com/hastic/hastic-server/blob/master/HOOKS.md) - notifications about events @@ -14,10 +14,10 @@ See also: ## Build & run -Server needs Grafana's API key (http:///org/apikeys) to query data from Grafana datasources. -API key role needs only `Viewer` access. +Hastic server requires Grafana's API key (http:///org/apikeys) to query data from Grafana datasources. +API key role requires only `Viewer` access. -You can install it on: +Possible to install on: * [Linux](#linux) * [Docker](#docker) @@ -26,18 +26,18 @@ You can install it on: #### Environment variables -You can export following environment variables for hastic-server to use: +It is possible to export the following environment variables for hastic-server to use: - HASTIC_API_KEY - (required) API-key of your Grafana instance - HASTIC_PORT - (optional) port you want to run server on, default: 8000 #### Dependencies -You need in your system: +System prerequisites: * [git](https://git-scm.com/download/linux) * [nodejs >= 6.0.0](https://nodejs.org/en/download/package-manager/#debian-and-ubuntu-based-linux-distributions) * [python3](https://www.python.org/downloads/) with pip3 -#### Intallation +#### Installation ```bash pip3 install pandas seglearn scipy tsfresh @@ -72,6 +72,6 @@ docker run -d --name hastic-server -p 80:8000 -e HASTIC_API_KEY=