Browse Source

Revert "fix"

This reverts commit c0a0ee5f12.
pull/1/head
amper43 6 years ago
parent
commit
a1957005df
  1. 79
      analytics/analytics/analytic_unit_worker.py
  2. 2
      analytics/analytics/detectors/detector.py
  3. 56
      analytics/analytics/detectors/pattern_detector.py
  4. 2
      analytics/analytics/detectors/threshold_detector.py

79
analytics/analytics/analytic_unit_worker.py

@ -2,7 +2,7 @@ import config
import detectors
import logging
import pandas as pd
from typing import Optional, Union, Generator
from typing import Optional, Union
from models import ModelCache
import concurrent.futures
import asyncio
@ -35,83 +35,12 @@ class AnalyticUnitWorker:
raise Exception('Timeout ({}s) exceeded while learning'.format(config.LEARNING_TIMEOUT))
async def do_detect(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> dict:
if cache is None:
msg = f'{self.analytic_unit_id} detection got invalid cache, skip detection'
logger.error(msg)
raise ValueError(msg)
window_size = cache['WINDOW_SIZE']
chunks = self.__get_data_chunks(data, window_size)
detection_result = {
'cache': None,
'segments': [],
'lastDetectionTime': None
}
for chunk in chunks:
await asyncio.sleep(0)
detected = self._detector.detect(data, cache)
if detected is not None:
detection_result['cache'] = detected['cache']
detection_result['lastDetectionTime'] = detected['lastDetectionTime']
detection_result['segments'].extend(detected['segments'])
return detection_result
# TODO: return without await
return await self._detector.detect(data, cache)
def cancel(self):
if self._training_future is not None:
self._training_future.cancel()
async def recieve_data(self, data: pd.DataFrame, cache: Optional[ModelCache]):
if cache is None:
msg = f'{self.analytic_unit_id} detection got invalid cache, skip detection'
logger.error(msg)
raise ValueError(msg)
window_size = cache['WINDOW_SIZE']
chunks = self.__get_data_chunks(data, window_size)
detection_result = {
'cache': None,
'segments': [],
'lastDetectionTime': None
}
for chunk in chunks:
await asyncio.sleep(0)
detected = self._detector.recieve_data(data, cache)
if detected is not None:
detection_result['cache'] = detected['cache']
detection_result['lastDetectionTime'] = detected['lastDetectionTime']
detection_result['segments'].extend(detected['segments'])
return detection_result
def __get_data_chunks(self, dataframe: pd.DataFrame, window_size: int) -> Generator[pd.DataFrame, None, None]:
"""
TODO: fix description
Return generator, that yields dataframe's chunks. Chunks have 3 WINDOW_SIZE length and 2 WINDOW_SIZE step.
Example: recieved dataframe: [0, 1, 2, 3, 4, 5], returned chunks [0, 1, 2], [2, 3, 4], [4, 5].
"""
chunk_size = window_size * 100
intersection = window_size
data_len = len(dataframe)
if data_len < chunk_size:
return (chunk for chunk in (dataframe,))
def slices():
nonintersected = chunk_size - intersection
mod = data_len % nonintersected
chunks_number = data_len // nonintersected
offset = 0
for i in range(chunks_number):
yield slice(offset, offset + nonintersected + 1)
offset += nonintersected
yield slice(offset, offset + mod)
return (dataframe[chunk_slice] for chunk_slice in slices())
return self._detector.recieve_data(data, cache)

2
analytics/analytics/detectors/detector.py

@ -14,7 +14,7 @@ class Detector(ABC):
pass
@abstractmethod
def detect(self, dataframe: DataFrame, cache: Optional[ModelCache]) -> dict:
async def detect(self, dataframe: DataFrame, cache: Optional[ModelCache]) -> dict:
pass
@abstractmethod

56
analytics/analytics/detectors/pattern_detector.py

@ -51,13 +51,32 @@ class PatternDetector(Detector):
'cache': new_cache
}
def detect(self, dataframe: pd.DataFrame, cache: Optional[models.ModelCache]) -> dict:
async def detect(self, dataframe: pd.DataFrame, cache: Optional[models.ModelCache]) -> dict:
logger.debug('Unit {} got {} data points for detection'.format(self.analytic_unit_id, len(dataframe)))
# TODO: split and sleep (https://github.com/hastic/hastic-server/pull/124#discussion_r214085643)
detected = self.model.detect(dataframe, self.analytic_unit_id, cache)
segments = [{ 'from': segment[0], 'to': segment[1] } for segment in detected['segments']]
if not cache:
msg = f'{self.analytic_unit_id} detection got invalid cache {cache}, skip detection'
logger.error(msg)
raise ValueError(msg)
window_size = cache.get('WINDOW_SIZE')
if not window_size:
msg = f'{self.analytic_unit_id} detection got invalid window size {window_size}'
chunks = self.__get_data_chunks(dataframe, window_size)
segments = []
segment_parser = lambda segment: { 'from': segment[0], 'to': segment[1] }
for chunk in chunks:
await asyncio.sleep(0)
detected = self.model.detect(dataframe, self.analytic_unit_id, cache)
for detected_segment in detected['segments']:
detected_segment = segment_parser(detected_segment)
if detected_segment not in segments:
segments.append(detected_segment)
newCache = detected['cache']
last_dataframe_time = dataframe.iloc[-1]['timestamp']
@ -79,7 +98,7 @@ class PatternDetector(Detector):
if cache == None:
logging.debug('Recieve_data cache is None for task {}'.format(self.analytic_unit_id))
cache = {}
bucket_size = max(cache.get('WINDOW_SIZE', 0) * 5, self.MIN_BUCKET_SIZE)
bucket_size = max(cache.get('WINDOW_SIZE', 0) * 3, self.MIN_BUCKET_SIZE)
res = self.detect(self.bucket.data, cache)
@ -92,3 +111,30 @@ class PatternDetector(Detector):
else:
return None
def __get_data_chunks(self, dataframe: pd.DataFrame, window_size: int) -> Generator[pd.DataFrame, None, None]:
"""
TODO: fix description
Return generator, that yields dataframe's chunks. Chunks have 3 WINDOW_SIZE length and 2 WINDOW_SIZE step.
Example: recieved dataframe: [0, 1, 2, 3, 4, 5], returned chunks [0, 1, 2], [2, 3, 4], [4, 5].
"""
chunk_size = window_size * 100
intersection = window_size
data_len = len(dataframe)
if data_len < chunk_size:
return (chunk for chunk in (dataframe,))
def slices():
nonintersected = chunk_size - intersection
mod = data_len % nonintersected
chunks_number = data_len // nonintersected
offset = 0
for i in range(chunks_number):
yield slice(offset, offset + nonintersected + 1)
offset += nonintersected
yield slice(offset, offset + mod)
return (dataframe[chunk_slice] for chunk_slice in slices())

2
analytics/analytics/detectors/threshold_detector.py

@ -25,7 +25,7 @@ class ThresholdDetector(Detector):
}
}
def detect(self, dataframe: pd.DataFrame, cache: ModelCache) -> dict:
async def detect(self, dataframe: pd.DataFrame, cache: ModelCache) -> dict:
if cache == None:
raise 'Threshold detector error: cannot detect before learning'
value = cache['value']

Loading…
Cancel
Save