|
|
|
@ -179,6 +179,60 @@ class TestDataset(unittest.TestCase):
|
|
|
|
|
model.do_detect(dataframe) |
|
|
|
|
max_pattern_index = max(model.do_detect(dataframe)) |
|
|
|
|
self.assertLessEqual(max_pattern_index, result) |
|
|
|
|
|
|
|
|
|
def test_peak_model_for_cache(self): |
|
|
|
|
cache = { |
|
|
|
|
'pattern_center': [1, 6], |
|
|
|
|
'model_peak': [1, 4, 0], |
|
|
|
|
'confidence': 2, |
|
|
|
|
'convolve_max': 8, |
|
|
|
|
'convolve_min': 7, |
|
|
|
|
'WINDOW_SIZE': 1, |
|
|
|
|
'conv_del_min': 0, |
|
|
|
|
'conv_del_max': 0, |
|
|
|
|
} |
|
|
|
|
data_val = [2.0, 5.0, 1.0, 1.0, 1.0, 2.0, 5.0, 1.0, 1.0, 2.0, 3.0, 7.0, 1.0, 1.0, 1.0] |
|
|
|
|
dataframe = create_dataframe(data_val) |
|
|
|
|
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False}] |
|
|
|
|
model = models.PeakModel() |
|
|
|
|
result = model.fit(dataframe, segments, cache) |
|
|
|
|
self.assertEqual(len(result['pattern_center']), 3) |
|
|
|
|
|
|
|
|
|
def test_trough_model_for_cache(self): |
|
|
|
|
cache = { |
|
|
|
|
'pattern_center': [2, 6], |
|
|
|
|
'pattern_model': [5, 0.5, 4], |
|
|
|
|
'confidence': 2, |
|
|
|
|
'convolve_max': 8, |
|
|
|
|
'convolve_min': 7, |
|
|
|
|
'WINDOW_SIZE': 1, |
|
|
|
|
'conv_del_min': 0, |
|
|
|
|
'conv_del_max': 0, |
|
|
|
|
} |
|
|
|
|
data_val = [5.0, 5.0, 1.0, 4.0, 5.0, 5.0, 0.0, 4.0, 5.0, 5.0, 6.0, 1.0, 5.0, 5.0, 5.0] |
|
|
|
|
dataframe = create_dataframe(data_val) |
|
|
|
|
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False}] |
|
|
|
|
model = models.TroughModel() |
|
|
|
|
result = model.fit(dataframe, segments, cache) |
|
|
|
|
self.assertEqual(len(result['pattern_center']), 3) |
|
|
|
|
|
|
|
|
|
def test_jump_model_for_cache(self): |
|
|
|
|
cache = { |
|
|
|
|
'pattern_center': [2, 6], |
|
|
|
|
'pattern_model': [5, 0.5, 4], |
|
|
|
|
'confidence': 2, |
|
|
|
|
'convolve_max': 8, |
|
|
|
|
'convolve_min': 7, |
|
|
|
|
'WINDOW_SIZE': 1, |
|
|
|
|
'conv_del_min': 0, |
|
|
|
|
'conv_del_max': 0, |
|
|
|
|
} |
|
|
|
|
data_val = [1.0, 1.0, 1.0, 4.0, 4.0, 0.0, 0.0, 5.0, 5.0, 0.0, 0.0, 4.0, 4.0, 4.0, 4.0] |
|
|
|
|
dataframe = create_dataframe(data_val) |
|
|
|
|
segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False}] |
|
|
|
|
model = models.JumpModel() |
|
|
|
|
result = model.fit(dataframe, segments, cache) |
|
|
|
|
self.assertEqual(len(result['pattern_center']), 3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|