Alexey Velikiy
6 years ago
9 changed files with 320 additions and 315 deletions
@ -1,19 +1,23 @@ |
|||||||
# Imports |
# Line endings |
||||||
|
|
||||||
You import local files first, than spesific liba and then standart libs. |
We use CRLS everywhere |
||||||
So you import from something very scecific to something very common. |
|
||||||
It allows you to pay attention on most important things from beginning. |
# Imports |
||||||
|
|
||||||
``` |
You import local files first, than spesific liba and then standart libs. |
||||||
|
So you import from something very scecific to something very common. |
||||||
from data_provider import DataProvider |
It allows you to pay attention on most important things from beginning. |
||||||
from anomaly_model import AnomalyModel |
|
||||||
from pattern_detection_model import PatternDetectionModel |
``` |
||||||
|
|
||||||
import numpy as np |
from data_provider import DataProvider |
||||||
|
from anomaly_model import AnomalyModel |
||||||
from scipy.signal import argrelextrema |
from pattern_detection_model import PatternDetectionModel |
||||||
|
|
||||||
import pickle |
import numpy as np |
||||||
|
|
||||||
|
from scipy.signal import argrelextrema |
||||||
|
|
||||||
|
import pickle |
||||||
|
|
||||||
``` |
``` |
@ -1,37 +1,37 @@ |
|||||||
import os |
import os |
||||||
import json |
import json |
||||||
|
|
||||||
|
|
||||||
PARENT_FOLDER = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) |
PARENT_FOLDER = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) |
||||||
DATA_FOLDER = os.path.join(PARENT_FOLDER, 'data') |
DATA_FOLDER = os.path.join(PARENT_FOLDER, 'data') |
||||||
CONFIG_FILE = os.path.join(PARENT_FOLDER, 'config.json') |
CONFIG_FILE = os.path.join(PARENT_FOLDER, 'config.json') |
||||||
|
|
||||||
|
|
||||||
config_exists = os.path.isfile(CONFIG_FILE) |
config_exists = os.path.isfile(CONFIG_FILE) |
||||||
if config_exists: |
if config_exists: |
||||||
with open(CONFIG_FILE) as f: |
with open(CONFIG_FILE) as f: |
||||||
config = json.load(f) |
config = json.load(f) |
||||||
|
|
||||||
|
|
||||||
def get_config_field(field, default_val = None): |
def get_config_field(field, default_val = None): |
||||||
|
|
||||||
if field in os.environ: |
if field in os.environ: |
||||||
return os.environ[field] |
return os.environ[field] |
||||||
|
|
||||||
if config_exists and field in config: |
if config_exists and field in config: |
||||||
return config[field] |
return config[field] |
||||||
|
|
||||||
if default_val is not None: |
if default_val is not None: |
||||||
return default_val |
return default_val |
||||||
|
|
||||||
raise Exception('Please configure {}'.format(field)) |
raise Exception('Please configure {}'.format(field)) |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
DATASET_FOLDER = os.path.join(DATA_FOLDER, 'datasets') |
DATASET_FOLDER = os.path.join(DATA_FOLDER, 'datasets') |
||||||
ANALYTIC_UNITS_FOLDER = os.path.join(DATA_FOLDER, 'analytic_units') |
ANALYTIC_UNITS_FOLDER = os.path.join(DATA_FOLDER, 'analytic_units') |
||||||
MODELS_FOLDER = os.path.join(DATA_FOLDER, 'models') |
MODELS_FOLDER = os.path.join(DATA_FOLDER, 'models') |
||||||
METRICS_FOLDER = os.path.join(DATA_FOLDER, 'metrics') |
METRICS_FOLDER = os.path.join(DATA_FOLDER, 'metrics') |
||||||
|
|
||||||
HASTIC_API_KEY = get_config_field('HASTIC_API_KEY') |
HASTIC_API_KEY = get_config_field('HASTIC_API_KEY') |
||||||
ZEROMQ_CONNECTION_STRING = get_config_field('ZEROMQ_CONNECTION_STRING', 'tcp://*:8002') |
ZEROMQ_CONNECTION_STRING = get_config_field('ZEROMQ_CONNECTION_STRING', 'tcp://*:8002') |
||||||
|
@ -1,5 +1,5 @@ |
|||||||
from detectors.general_detector import GeneralDetector |
from detectors.general_detector import GeneralDetector |
||||||
from detectors.pattern_detection_model import PatternDetectionModel |
from detectors.pattern_detection_model import PatternDetectionModel |
||||||
from detectors.peaks_detector import PeaksDetector |
from detectors.peaks_detector import PeaksDetector |
||||||
from detectors.step_detector import StepDetector |
from detectors.step_detector import StepDetector |
||||||
from detectors.jump_detector import Jumpdetector |
from detectors.jump_detector import Jumpdetector |
||||||
|
@ -1,138 +1,138 @@ |
|||||||
import numpy as np |
import numpy as np |
||||||
import pickle |
import pickle |
||||||
import scipy.signal |
import scipy.signal |
||||||
from scipy.fftpack import fft |
from scipy.fftpack import fft |
||||||
from scipy.signal import argrelextrema |
from scipy.signal import argrelextrema |
||||||
import math |
import math |
||||||
|
|
||||||
def is_intersect(target_segment, segments): |
def is_intersect(target_segment, segments): |
||||||
for segment in segments: |
for segment in segments: |
||||||
start = max(segment['start'], target_segment[0]) |
start = max(segment['start'], target_segment[0]) |
||||||
finish = min(segment['finish'], target_segment[1]) |
finish = min(segment['finish'], target_segment[1]) |
||||||
if start <= finish: |
if start <= finish: |
||||||
return True |
return True |
||||||
return False |
return False |
||||||
|
|
||||||
def exponential_smoothing(series, alpha): |
def exponential_smoothing(series, alpha): |
||||||
result = [series[0]] |
result = [series[0]] |
||||||
for n in range(1, len(series)): |
for n in range(1, len(series)): |
||||||
result.append(alpha * series[n] + (1 - alpha) * result[n-1]) |
result.append(alpha * series[n] + (1 - alpha) * result[n-1]) |
||||||
return result |
return result |
||||||
|
|
||||||
class Jumpdetector: |
class Jumpdetector: |
||||||
|
|
||||||
def __init__(self, pattern): |
def __init__(self, pattern): |
||||||
self.pattern = pattern |
self.pattern = pattern |
||||||
self.segments = [] |
self.segments = [] |
||||||
self.confidence = 1.5 |
self.confidence = 1.5 |
||||||
self.convolve_max = 120 |
self.convolve_max = 120 |
||||||
|
|
||||||
def fit(self, dataframe, segments): |
def fit(self, dataframe, segments): |
||||||
data = dataframe['value'] |
data = dataframe['value'] |
||||||
confidences = [] |
confidences = [] |
||||||
convolve_list = [] |
convolve_list = [] |
||||||
for segment in segments: |
for segment in segments: |
||||||
if segment['labeled']: |
if segment['labeled']: |
||||||
segment_data = data[segment['start'] : segment['finish'] + 1] |
segment_data = data[segment['start'] : segment['finish'] + 1] |
||||||
segment_min = min(segment_data) |
segment_min = min(segment_data) |
||||||
segment_max = max(segment_data) |
segment_max = max(segment_data) |
||||||
confidences.append(0.20 * (segment_max - segment_min)) |
confidences.append(0.20 * (segment_max - segment_min)) |
||||||
flat_segment = segment_data.rolling(window=5).mean() #сглаживаем сегмент |
flat_segment = segment_data.rolling(window=5).mean() #сглаживаем сегмент |
||||||
# в идеале нужно посмотреть гистограмму сегмента и выбрать среднее значение, |
# в идеале нужно посмотреть гистограмму сегмента и выбрать среднее значение, |
||||||
# далее от него брать + -120 |
# далее от него брать + -120 |
||||||
segment_summ = 0 |
segment_summ = 0 |
||||||
for val in flat_segment: |
for val in flat_segment: |
||||||
segment_summ += val |
segment_summ += val |
||||||
segment_mid = segment_summ / len(flat_segment) #посчитать нормально среднее значение/медиану |
segment_mid = segment_summ / len(flat_segment) #посчитать нормально среднее значение/медиану |
||||||
for ind in range(1, len(flat_segment) - 1): |
for ind in range(1, len(flat_segment) - 1): |
||||||
if flat_segment[ind + 1] > segment_mid and flat_segment[ind - 1] < segment_mid: |
if flat_segment[ind + 1] > segment_mid and flat_segment[ind - 1] < segment_mid: |
||||||
flat_mid_index = ind # найти пересечение средней и графика, получить его индекс |
flat_mid_index = ind # найти пересечение средней и графика, получить его индекс |
||||||
segment_mid_index = flat_mid_index - 5 |
segment_mid_index = flat_mid_index - 5 |
||||||
labeled_drop = data[segment_mid_index - 120 : segment_mid_index + 120] |
labeled_drop = data[segment_mid_index - 120 : segment_mid_index + 120] |
||||||
labeled_min = min(labeled_drop) |
labeled_min = min(labeled_drop) |
||||||
for value in labeled_drop: # обрезаем |
for value in labeled_drop: # обрезаем |
||||||
value = value - labeled_min |
value = value - labeled_min |
||||||
labeled_max = max(labeled_drop) |
labeled_max = max(labeled_drop) |
||||||
for value in labeled_drop: # нормируем |
for value in labeled_drop: # нормируем |
||||||
value = value / labeled_max |
value = value / labeled_max |
||||||
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) |
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) |
||||||
convolve_list.append(max(convolve)) # сворачиваем паттерн |
convolve_list.append(max(convolve)) # сворачиваем паттерн |
||||||
# плюс надо впихнуть сюда логистическую сигмоиду и поиск альфы |
# плюс надо впихнуть сюда логистическую сигмоиду и поиск альфы |
||||||
|
|
||||||
if len(confidences) > 0: |
if len(confidences) > 0: |
||||||
self.confidence = min(confidences) |
self.confidence = min(confidences) |
||||||
else: |
else: |
||||||
self.confidence = 1.5 |
self.confidence = 1.5 |
||||||
|
|
||||||
if len(convolve_list) > 0: |
if len(convolve_list) > 0: |
||||||
self.convolve_max = max(convolve_list) |
self.convolve_max = max(convolve_list) |
||||||
else: |
else: |
||||||
self.convolve_max = 120 # макс метрика свертки равна отступу(120), вау! |
self.convolve_max = 120 # макс метрика свертки равна отступу(120), вау! |
||||||
|
|
||||||
def logistic_sigmoid(x1, x2, alpha, height): |
def logistic_sigmoid(x1, x2, alpha, height): |
||||||
distribution = [] |
distribution = [] |
||||||
for i in range(x, y): |
for i in range(x, y): |
||||||
F = 1 * height / (1 + math.exp(-i * alpha)) |
F = 1 * height / (1 + math.exp(-i * alpha)) |
||||||
distribution.append(F) |
distribution.append(F) |
||||||
return distribution |
return distribution |
||||||
|
|
||||||
async def predict(self, dataframe): |
async def predict(self, dataframe): |
||||||
data = dataframe['value'] |
data = dataframe['value'] |
||||||
|
|
||||||
result = self.__predict(data) |
result = self.__predict(data) |
||||||
result.sort() |
result.sort() |
||||||
|
|
||||||
if len(self.segments) > 0: |
if len(self.segments) > 0: |
||||||
result = [segment for segment in result if not is_intersect(segment, self.segments)] |
result = [segment for segment in result if not is_intersect(segment, self.segments)] |
||||||
return result |
return result |
||||||
|
|
||||||
def __predict(self, data): |
def __predict(self, data): |
||||||
window_size = 24 |
window_size = 24 |
||||||
all_max_flatten_data = data.rolling(window=window_size).mean() |
all_max_flatten_data = data.rolling(window=window_size).mean() |
||||||
extrema_list = [] |
extrema_list = [] |
||||||
# добавить все пересечения экспоненты со сглаженным графиком |
# добавить все пересечения экспоненты со сглаженным графиком |
||||||
# |
# |
||||||
for i in exponential_smoothing(data + self.confidence, 0.02): |
for i in exponential_smoothing(data + self.confidence, 0.02): |
||||||
extrema_list.append(i) |
extrema_list.append(i) |
||||||
|
|
||||||
segments = [] |
segments = [] |
||||||
for i in all_mins: |
for i in all_mins: |
||||||
if all_max_flatten_data[i] > extrema_list[i]: |
if all_max_flatten_data[i] > extrema_list[i]: |
||||||
segments.append(i - window_size) |
segments.append(i - window_size) |
||||||
|
|
||||||
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)] |
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)] |
||||||
|
|
||||||
def __filter_prediction(self, segments, all_max_flatten_data): |
def __filter_prediction(self, segments, all_max_flatten_data): |
||||||
delete_list = [] |
delete_list = [] |
||||||
variance_error = int(0.004 * len(all_max_flatten_data)) |
variance_error = int(0.004 * len(all_max_flatten_data)) |
||||||
if variance_error > 200: |
if variance_error > 200: |
||||||
variance_error = 200 |
variance_error = 200 |
||||||
for i in range(1, len(segments)): |
for i in range(1, len(segments)): |
||||||
if segments[i] < segments[i - 1] + variance_error: |
if segments[i] < segments[i - 1] + variance_error: |
||||||
delete_list.append(segments[i]) |
delete_list.append(segments[i]) |
||||||
for item in delete_list: |
for item in delete_list: |
||||||
segments.remove(item) |
segments.remove(item) |
||||||
|
|
||||||
# изменить секонд делит лист, сделать для свертки с сигмоидой |
# изменить секонд делит лист, сделать для свертки с сигмоидой |
||||||
delete_list = [] |
delete_list = [] |
||||||
pattern_data = all_max_flatten_data[segments[0] - 120 : segments[0] + 120] |
pattern_data = all_max_flatten_data[segments[0] - 120 : segments[0] + 120] |
||||||
for segment in segments: |
for segment in segments: |
||||||
convol_data = all_max_flatten_data[segment - 120 : segment + 120] |
convol_data = all_max_flatten_data[segment - 120 : segment + 120] |
||||||
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
||||||
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9: |
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9: |
||||||
delete_list.append(segment) |
delete_list.append(segment) |
||||||
for item in delete_list: |
for item in delete_list: |
||||||
segments.remove(item) |
segments.remove(item) |
||||||
|
|
||||||
return segments |
return segments |
||||||
|
|
||||||
def save(self, model_filename): |
def save(self, model_filename): |
||||||
with open(model_filename, 'wb') as file: |
with open(model_filename, 'wb') as file: |
||||||
pickle.dump((self.confidence, self.convolve_max), file) |
pickle.dump((self.confidence, self.convolve_max), file) |
||||||
|
|
||||||
def load(self, model_filename): |
def load(self, model_filename): |
||||||
try: |
try: |
||||||
with open(model_filename, 'rb') as file: |
with open(model_filename, 'rb') as file: |
||||||
(self.confidence, self.convolve_max) = pickle.load(file) |
(self.confidence, self.convolve_max) = pickle.load(file) |
||||||
except: |
except: |
||||||
pass |
pass |
||||||
|
@ -1,64 +1,64 @@ |
|||||||
import config |
import config |
||||||
import json |
import json |
||||||
import logging |
import logging |
||||||
import sys |
import sys |
||||||
import asyncio |
import asyncio |
||||||
|
|
||||||
import services |
import services |
||||||
from analytic_unit_worker import AnalyticUnitWorker |
from analytic_unit_worker import AnalyticUnitWorker |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
root = logging.getLogger() |
root = logging.getLogger() |
||||||
logger = logging.getLogger('SERVER') |
logger = logging.getLogger('SERVER') |
||||||
|
|
||||||
worker = None |
worker = None |
||||||
server_service = None |
server_service = None |
||||||
data_service = None |
data_service = None |
||||||
|
|
||||||
root.setLevel(logging.DEBUG) |
root.setLevel(logging.DEBUG) |
||||||
|
|
||||||
ch = logging.StreamHandler(sys.stdout) |
ch = logging.StreamHandler(sys.stdout) |
||||||
ch.setLevel(logging.DEBUG) |
ch.setLevel(logging.DEBUG) |
||||||
formatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s") |
formatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s") |
||||||
ch.setFormatter(formatter) |
ch.setFormatter(formatter) |
||||||
root.addHandler(ch) |
root.addHandler(ch) |
||||||
|
|
||||||
|
|
||||||
async def handle_task(text): |
async def handle_task(text): |
||||||
try: |
try: |
||||||
task = json.loads(text) |
task = json.loads(text) |
||||||
logger.info("Command is OK") |
logger.info("Command is OK") |
||||||
|
|
||||||
await server_service.send_message(json.dumps({ |
await server_service.send_message(json.dumps({ |
||||||
'_taskId': task['_taskId'], |
'_taskId': task['_taskId'], |
||||||
'task': task['type'], |
'task': task['type'], |
||||||
'analyticUnitId': task['analyticUnitId'], |
'analyticUnitId': task['analyticUnitId'], |
||||||
'status': "in progress" |
'status': "in progress" |
||||||
})) |
})) |
||||||
|
|
||||||
res = await worker.do_task(task) |
res = await worker.do_task(task) |
||||||
res['_taskId'] = task['_taskId'] |
res['_taskId'] = task['_taskId'] |
||||||
await server_service.send_message(json.dumps(res)) |
await server_service.send_message(json.dumps(res)) |
||||||
|
|
||||||
except Exception as e: |
except Exception as e: |
||||||
logger.error("Exception: '%s'" % str(e)) |
logger.error("Exception: '%s'" % str(e)) |
||||||
|
|
||||||
def init_services(): |
def init_services(): |
||||||
logger.info("Starting services...") |
logger.info("Starting services...") |
||||||
logger.info("Server...") |
logger.info("Server...") |
||||||
server_service = services.ServerService(handle_task) |
server_service = services.ServerService(handle_task) |
||||||
logger.info("Ok") |
logger.info("Ok") |
||||||
logger.info("Data service...") |
logger.info("Data service...") |
||||||
data_service = services.DataService(server_service) |
data_service = services.DataService(server_service) |
||||||
logger.info("Ok") |
logger.info("Ok") |
||||||
|
|
||||||
return server_service, data_service |
return server_service, data_service |
||||||
|
|
||||||
if __name__ == "__main__": |
if __name__ == "__main__": |
||||||
loop = asyncio.get_event_loop() |
loop = asyncio.get_event_loop() |
||||||
logger.info("Starting worker...") |
logger.info("Starting worker...") |
||||||
worker = AnalyticUnitWorker() |
worker = AnalyticUnitWorker() |
||||||
logger.info("Ok") |
logger.info("Ok") |
||||||
server_service, data_service = init_services() |
server_service, data_service = init_services() |
||||||
loop.run_until_complete(server_service.handle_loop()) |
loop.run_until_complete(server_service.handle_loop()) |
||||||
|
@ -1,2 +1,2 @@ |
|||||||
from services.server_service import ServerService |
from services.server_service import ServerService |
||||||
from services.data_service import DataService |
from services.data_service import DataService |
||||||
|
@ -1,9 +1,9 @@ |
|||||||
class DataService: |
class DataService: |
||||||
def __init__(self, server_service): |
def __init__(self, server_service): |
||||||
self.server_service = server_service |
self.server_service = server_service |
||||||
|
|
||||||
async def safe_file(filename, content): |
async def safe_file(filename, content): |
||||||
pass |
pass |
||||||
|
|
||||||
async def load_file(filename, content): |
async def load_file(filename, content): |
||||||
pass |
pass |
@ -1,42 +1,42 @@ |
|||||||
import config |
import config |
||||||
|
|
||||||
import zmq |
import zmq |
||||||
import zmq.asyncio |
import zmq.asyncio |
||||||
import logging |
import logging |
||||||
|
|
||||||
import asyncio |
import asyncio |
||||||
|
|
||||||
logger = logging.getLogger('SERVER_SERVICE') |
logger = logging.getLogger('SERVER_SERVICE') |
||||||
|
|
||||||
|
|
||||||
class ServerService: |
class ServerService: |
||||||
|
|
||||||
def __init__(self, on_message_handler): |
def __init__(self, on_message_handler): |
||||||
self.on_message_handler = on_message_handler |
self.on_message_handler = on_message_handler |
||||||
|
|
||||||
logger.info("Binding to %s ..." % config.ZEROMQ_CONNECTION_STRING) |
logger.info("Binding to %s ..." % config.ZEROMQ_CONNECTION_STRING) |
||||||
self.context = zmq.asyncio.Context() |
self.context = zmq.asyncio.Context() |
||||||
self.socket = self.context.socket(zmq.PAIR) |
self.socket = self.context.socket(zmq.PAIR) |
||||||
self.socket.bind(config.ZEROMQ_CONNECTION_STRING) |
self.socket.bind(config.ZEROMQ_CONNECTION_STRING) |
||||||
|
|
||||||
async def handle_loop(self): |
async def handle_loop(self): |
||||||
while True: |
while True: |
||||||
received_bytes = await self.socket.recv() |
received_bytes = await self.socket.recv() |
||||||
text = received_bytes.decode('utf-8') |
text = received_bytes.decode('utf-8') |
||||||
|
|
||||||
if text == 'ping': |
if text == 'ping': |
||||||
asyncio.ensure_future(self.__handle_ping()) |
asyncio.ensure_future(self.__handle_ping()) |
||||||
else: |
else: |
||||||
asyncio.ensure_future(self.__handle_message(text)) |
asyncio.ensure_future(self.__handle_message(text)) |
||||||
|
|
||||||
async def send_message(self, string): |
async def send_message(self, string): |
||||||
await self.socket.send_string(string) |
await self.socket.send_string(string) |
||||||
|
|
||||||
async def __handle_ping(self): |
async def __handle_ping(self): |
||||||
await self.socket.send(b'pong') |
await self.socket.send(b'pong') |
||||||
|
|
||||||
async def __handle_message(self, text): |
async def __handle_message(self, text): |
||||||
try: |
try: |
||||||
asyncio.ensure_future(self.on_message_handler(text)) |
asyncio.ensure_future(self.on_message_handler(text)) |
||||||
except Exception as e: |
except Exception as e: |
||||||
logger.error("Exception: '%s'" % str(e)) |
logger.error("Exception: '%s'" % str(e)) |
||||||
|
Loading…
Reference in new issue