|
|
@ -14,17 +14,17 @@ class TestUtils(unittest.TestCase): |
|
|
|
|
|
|
|
|
|
|
|
def test_confidence_all_normal_value(self): |
|
|
|
def test_confidence_all_normal_value(self): |
|
|
|
segment = [1, 2, 0, 6, 8, 5, 3] |
|
|
|
segment = [1, 2, 0, 6, 8, 5, 3] |
|
|
|
utils_result = utils.find_confidence(segment) |
|
|
|
utils_result = utils.find_confidence(segment)[0] |
|
|
|
result = 1.6 |
|
|
|
result = 1.6 |
|
|
|
self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE)) |
|
|
|
self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE)) |
|
|
|
|
|
|
|
|
|
|
|
def test_confidence_all_nan_value(self): |
|
|
|
def test_confidence_all_nan_value(self): |
|
|
|
segment = [np.NaN, np.NaN, np.NaN, np.NaN] |
|
|
|
segment = [np.NaN, np.NaN, np.NaN, np.NaN] |
|
|
|
self.assertEqual(utils.find_confidence(segment), 0) |
|
|
|
self.assertEqual(utils.find_confidence(segment)[0], 0) |
|
|
|
|
|
|
|
|
|
|
|
def test_confidence_with_nan_value(self): |
|
|
|
def test_confidence_with_nan_value(self): |
|
|
|
data = [np.NaN, np.NaN, 0, 8] |
|
|
|
data = [np.NaN, np.NaN, 0, 8] |
|
|
|
utils_result = utils.find_confidence(data) |
|
|
|
utils_result = utils.find_confidence(data)[0] |
|
|
|
result = 1.6 |
|
|
|
result = 1.6 |
|
|
|
self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE)) |
|
|
|
self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE)) |
|
|
|
|
|
|
|
|
|
|
@ -91,39 +91,39 @@ class TestUtils(unittest.TestCase): |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
jump_center = [10, 11] |
|
|
|
jump_center = [10, 11] |
|
|
|
self.assertIn(utils.find_parameters(segment, 0, 'jump')[0], jump_center) |
|
|
|
self.assertIn(utils.find_pattern_center(segment, 0, 'jump'), jump_center) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_jump_parameters_height(self): |
|
|
|
def test_find_jump_parameters_height(self): |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
jump_height = [3.5, 4] |
|
|
|
jump_height = [3.5, 4] |
|
|
|
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'jump')[1], jump_height[0]) |
|
|
|
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'jump')[0], jump_height[0]) |
|
|
|
self.assertLessEqual(utils.find_parameters(segment, 0, 'jump')[1], jump_height[1]) |
|
|
|
self.assertLessEqual(utils.find_parameters(segment, 0, 'jump')[0], jump_height[1]) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_jump_parameters_length(self): |
|
|
|
def test_find_jump_parameters_length(self): |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
jump_length = 2 |
|
|
|
jump_length = 2 |
|
|
|
self.assertEqual(utils.find_parameters(segment, 0, 'jump')[2], jump_length) |
|
|
|
self.assertEqual(utils.find_parameters(segment, 0, 'jump')[1], jump_length) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_drop_parameters_center(self): |
|
|
|
def test_find_drop_parameters_center(self): |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
drop_center = [14, 15, 16] |
|
|
|
drop_center = [14, 15, 16] |
|
|
|
self.assertIn(utils.find_parameters(segment, 0, 'drop')[0], drop_center) |
|
|
|
self.assertIn(utils.find_pattern_center(segment, 0, 'drop'), drop_center) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_drop_parameters_height(self): |
|
|
|
def test_find_drop_parameters_height(self): |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
drop_height = [3.5, 4] |
|
|
|
drop_height = [3.5, 4] |
|
|
|
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'drop')[1], drop_height[0]) |
|
|
|
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'drop')[0], drop_height[0]) |
|
|
|
self.assertLessEqual(utils.find_parameters(segment, 0, 'drop')[1], drop_height[1]) |
|
|
|
self.assertLessEqual(utils.find_parameters(segment, 0, 'drop')[0], drop_height[1]) |
|
|
|
|
|
|
|
|
|
|
|
def test_find_drop_parameters_length(self): |
|
|
|
def test_find_drop_parameters_length(self): |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
|
|
segment = pd.Series(segment) |
|
|
|
segment = pd.Series(segment) |
|
|
|
drop_length = 2 |
|
|
|
drop_length = 2 |
|
|
|
self.assertEqual(utils.find_parameters(segment, 0, 'drop')[2], drop_length) |
|
|
|
self.assertEqual(utils.find_parameters(segment, 0, 'drop')[1], drop_length) |
|
|
|
|
|
|
|
|
|
|
|
def test_get_av_model_empty_data(self): |
|
|
|
def test_get_av_model_empty_data(self): |
|
|
|
patterns_list = [] |
|
|
|
patterns_list = [] |
|
|
@ -189,6 +189,13 @@ class TestUtils(unittest.TestCase): |
|
|
|
utils_result_segment = utils.get_distribution_density(segment) |
|
|
|
utils_result_segment = utils.get_distribution_density(segment) |
|
|
|
self.assertEqual(len(utils_result_data), 3) |
|
|
|
self.assertEqual(len(utils_result_data), 3) |
|
|
|
self.assertEqual(utils_result_segment, (0, 0, 0)) |
|
|
|
self.assertEqual(utils_result_segment, (0, 0, 0)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_find_pattern_jump_center(self): |
|
|
|
|
|
|
|
data = [1.0, 1.0, 1.0, 5.0, 5.0, 5.0] |
|
|
|
|
|
|
|
data = pd.Series(data) |
|
|
|
|
|
|
|
median = 3.0 |
|
|
|
|
|
|
|
result = 3 |
|
|
|
|
|
|
|
self.assertEqual(result, utils.find_pattern_center(data, 0, 'jump')) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
if __name__ == '__main__': |
|
|
|
unittest.main() |
|
|
|
unittest.main() |
|
|
|