From 6b398d6ee9403ea14a61b4fea645474ce483693a Mon Sep 17 00:00:00 2001 From: Alexandr Velikiy <39257464+VargBurz@users.noreply.github.com> Date: Wed, 8 May 2019 15:57:42 +0300 Subject: [PATCH] Segment class #636 (#637) --- .../analytic_types/detector_typing.py | 21 +++- analytics/analytics/analytic_types/segment.py | 18 +++ analytics/analytics/analytic_unit_worker.py | 6 +- .../analytics/detectors/anomaly_detector.py | 10 +- analytics/analytics/detectors/detector.py | 6 +- .../analytics/detectors/pattern_detector.py | 6 +- .../analytics/detectors/threshold_detector.py | 13 +- analytics/analytics/models/__init__.py | 2 +- analytics/analytics/models/custom_model.py | 11 +- analytics/analytics/models/drop_model.py | 10 +- analytics/analytics/models/general_model.py | 10 +- analytics/analytics/models/jump_model.py | 10 +- analytics/analytics/models/model.py | 68 +++++++--- analytics/analytics/models/peak_model.py | 10 +- analytics/analytics/models/trough_model.py | 10 +- analytics/analytics/utils/__init__.py | 1 - analytics/analytics/utils/common.py | 31 +++-- analytics/analytics/utils/segments.py | 9 -- analytics/tests/test_detectors.py | 4 +- analytics/tests/test_utils.py | 117 +++++++----------- server/src/services/alert_service.ts | 4 +- 21 files changed, 221 insertions(+), 156 deletions(-) create mode 100644 analytics/analytics/analytic_types/segment.py delete mode 100644 analytics/analytics/utils/segments.py diff --git a/analytics/analytics/analytic_types/detector_typing.py b/analytics/analytics/analytic_types/detector_typing.py index 39bc689..b339035 100644 --- a/analytics/analytics/analytic_types/detector_typing.py +++ b/analytics/analytics/analytic_types/detector_typing.py @@ -1,16 +1,29 @@ -import utils.meta from analytic_types import ModelCache +from analytic_types.segment import Segment + +from typing import List, Optional -@utils.meta.JSONClass class DetectionResult: def __init__( self, - cache: ModelCache = ModelCache(), - segments: list = [], + cache: Optional[ModelCache] = None, + segments: Optional[List[Segment]] = None, last_detection_time: int = None ): + if cache is None: + cache = {} + if segments is None: + segments = [] self.cache = cache self.segments = segments self.last_detection_time = last_detection_time + + # TODO: use @utils.meta.JSONClass (now it can't serialize list of objects) + def to_json(self): + return { + 'cache': self.cache, + 'segments': list(map(lambda segment: segment.to_json(), self.segments)), + 'lastDetectionTime': self.last_detection_time + } diff --git a/analytics/analytics/analytic_types/segment.py b/analytics/analytics/analytic_types/segment.py new file mode 100644 index 0000000..516b888 --- /dev/null +++ b/analytics/analytics/analytic_types/segment.py @@ -0,0 +1,18 @@ +from typing import Optional + +class Segment: + ''' + Used for segment manipulation instead of { 'from': ..., 'to': ... } dict + ''' + + def __init__(self, from_timestamp: int, to_timestamp: int): + if to_timestamp < from_timestamp: + raise ValueError(f'Can`t create segment with to < from: {to_timestamp} < {from_timestamp}') + self.from_timestamp = from_timestamp + self.to_timestamp = to_timestamp + + def to_json(self): + return { + 'from': self.from_timestamp, + 'to': self.to_timestamp + } diff --git a/analytics/analytics/analytic_unit_worker.py b/analytics/analytics/analytic_unit_worker.py index c3f9636..f0e838d 100644 --- a/analytics/analytics/analytic_unit_worker.py +++ b/analytics/analytics/analytic_unit_worker.py @@ -59,7 +59,7 @@ class AnalyticUnitWorker: chunk_dataframe = prepare_data(chunk) detected = self._detector.detect(chunk_dataframe, cache) self.__append_detection_result(detection_result, detected) - detection_result.segments = self._detector.get_intersections(detection_result.segments) + detection_result.segments = self._detector.merge_segments(detection_result.segments) return detection_result.to_json() def cancel(self): @@ -77,7 +77,7 @@ class AnalyticUnitWorker: detected = self._detector.consume_data(chunk_dataframe, cache) self.__append_detection_result(detection_result, detected) - detection_result.segments = self._detector.get_intersections(detection_result.segments) + detection_result.segments = self._detector.merge_segments(detection_result.segments) if detection_result.last_detection_time is None: return None @@ -85,7 +85,7 @@ class AnalyticUnitWorker: return detection_result.to_json() # TODO: move result concatenation to Detectors - def __append_detection_result(self, detection_result: DetectionResult, new_chunk: dict): + def __append_detection_result(self, detection_result: DetectionResult, new_chunk: DetectionResult): if new_chunk is not None: detection_result.cache = new_chunk.cache detection_result.last_detection_time = new_chunk.last_detection_time diff --git a/analytics/analytics/detectors/anomaly_detector.py b/analytics/analytics/detectors/anomaly_detector.py index 79f8df2..1c7f7bf 100644 --- a/analytics/analytics/detectors/anomaly_detector.py +++ b/analytics/analytics/detectors/anomaly_detector.py @@ -5,6 +5,7 @@ from typing import Optional, Union, List, Tuple from analytic_types import AnalyticUnitId, ModelCache from analytic_types.detector_typing import DetectionResult from analytic_types.data_bucket import DataBucket +from analytic_types.segment import Segment from detectors import Detector import utils @@ -40,9 +41,10 @@ class AnomalyDetector(Detector): for idx, val in enumerate(data.values): if val > upper_bound.values[idx] or val < lower_bound.values[idx]: anomaly_indexes.append(data.index[idx]) + # TODO: use Segment in utils segments = utils.close_filtering(anomaly_indexes, 1) segments = utils.get_start_and_end_of_segments(segments) - segments = [( + segments = [Segment( utils.convert_pd_timestamp_to_ms(dataframe['timestamp'][segment[0]]), utils.convert_pd_timestamp_to_ms(dataframe['timestamp'][segment[1]]), ) for segment in segments] @@ -67,8 +69,6 @@ class AnomalyDetector(Detector): break return level - def get_intersections(self, segments: List[dict]) -> List[dict]: - segments = [[segment['from'], segment['to']] for segment in segments] - segments = utils.merge_intersecting_intervals(segments) - segments = [{'from': segment[0], 'to': segment[1]} for segment in segments] + def merge_segments(self, segments: List[Segment]) -> List[Segment]: + segments = utils.merge_intersecting_segments(segments) return segments diff --git a/analytics/analytics/detectors/detector.py b/analytics/analytics/detectors/detector.py index 2232d70..82034a9 100644 --- a/analytics/analytics/detectors/detector.py +++ b/analytics/analytics/detectors/detector.py @@ -4,6 +4,7 @@ from typing import Optional, Union, List from analytic_types import ModelCache from analytic_types.detector_typing import DetectionResult +from analytic_types.segment import Segment class Detector(ABC): @@ -27,6 +28,5 @@ class Detector(ABC): def get_window_size(self, cache: Optional[ModelCache]) -> int: pass - @abstractmethod - def get_intersections(self, segments: List[dict]) -> List[dict]: - pass + def merge_segments(self, segments: List[Segment]) -> List[Segment]: + return segments diff --git a/analytics/analytics/detectors/pattern_detector.py b/analytics/analytics/detectors/pattern_detector.py index 65d4cfe..406e075 100644 --- a/analytics/analytics/detectors/pattern_detector.py +++ b/analytics/analytics/detectors/pattern_detector.py @@ -12,6 +12,7 @@ from analytic_types.data_bucket import DataBucket from utils import convert_pd_timestamp_to_ms from analytic_types import AnalyticUnitId, ModelCache from analytic_types.detector_typing import DetectionResult +from analytic_types.segment import Segment logger = logging.getLogger('PATTERN_DETECTOR') @@ -78,7 +79,7 @@ class PatternDetector(Detector): detected = self.model.detect(dataframe, self.analytic_unit_id) - segments = [{ 'from': segment[0], 'to': segment[1] } for segment in detected['segments']] + segments = [Segment(segment[0], segment[1]) for segment in detected['segments']] new_cache = detected['cache'].to_json() last_dataframe_time = dataframe.iloc[-1]['timestamp'] last_detection_time = convert_pd_timestamp_to_ms(last_dataframe_time) @@ -123,7 +124,6 @@ class PatternDetector(Detector): def get_window_size(self, cache: Optional[ModelCache]) -> int: if cache is None: return self.DEFAULT_WINDOW_SIZE + # TODO: windowSize -> window_size return cache.get('windowSize', self.DEFAULT_WINDOW_SIZE) - def get_intersections(self, segments: List[dict]) -> List[dict]: - return segments diff --git a/analytics/analytics/detectors/threshold_detector.py b/analytics/analytics/detectors/threshold_detector.py index c8ad572..186ffa0 100644 --- a/analytics/analytics/detectors/threshold_detector.py +++ b/analytics/analytics/detectors/threshold_detector.py @@ -6,6 +6,7 @@ from typing import Optional, List from analytic_types import ModelCache from analytic_types.detector_typing import DetectionResult +from analytic_types.segment import Segment from detectors import Detector from time import time from utils import convert_sec_to_ms, convert_pd_timestamp_to_ms @@ -40,17 +41,16 @@ class ThresholdDetector(Detector): segments = [] for index, row in dataframe.iterrows(): + current_value = row['value'] current_timestamp = convert_pd_timestamp_to_ms(row['timestamp']) - segment = { 'from': current_timestamp, 'to': current_timestamp } + segment = Segment(current_timestamp, current_timestamp) + # TODO: merge segments - if pd.isnull(row['value']): + if pd.isnull(current_value): if condition == 'NO_DATA': - segment['params'] = { value: None } segments.append(segment) continue - current_value = row['value'] - segment['params'] = { value: row['value'] } if condition == '>': if current_value > value: segments.append(segment) @@ -78,6 +78,3 @@ class ThresholdDetector(Detector): def get_window_size(self, cache: Optional[ModelCache]) -> int: return self.WINDOW_SIZE - - def get_intersections(self, segments: List[dict]) -> List[dict]: - return segments diff --git a/analytics/analytics/models/__init__.py b/analytics/analytics/models/__init__.py index 2acf839..646427e 100644 --- a/analytics/analytics/models/__init__.py +++ b/analytics/analytics/models/__init__.py @@ -1,4 +1,4 @@ -from models.model import Model, ModelState +from models.model import Model, ModelState, AnalyticSegment from models.drop_model import DropModel, DropModelState from models.peak_model import PeakModel, PeakModelState from models.jump_model import JumpModel, JumpModelState diff --git a/analytics/analytics/models/custom_model.py b/analytics/analytics/models/custom_model.py index 20f7852..ab7a856 100644 --- a/analytics/analytics/models/custom_model.py +++ b/analytics/analytics/models/custom_model.py @@ -1,10 +1,17 @@ -from models import Model +from models import Model, AnalyticSegment import utils import pandas as pd +from typing import List class CustomModel(Model): - def do_fit(self, dataframe: pd.DataFrame, labeled_segments: list, deleted_segments: list) -> None: + def do_fit( + self, + dataframe: pd.DataFrame, + labeled_segments: List[AnalyticSegment], + deleted_segments: List[AnalyticSegment], + learning_info: dict + ) -> None: pass def do_detect(self, dataframe: pd.DataFrame) -> list: diff --git a/analytics/analytics/models/drop_model.py b/analytics/analytics/models/drop_model.py index 2720690..3053d8e 100644 --- a/analytics/analytics/models/drop_model.py +++ b/analytics/analytics/models/drop_model.py @@ -1,4 +1,4 @@ -from models import Model, ModelState +from models import Model, ModelState, AnalyticSegment import scipy.signal from scipy.fftpack import fft @@ -43,7 +43,13 @@ class DropModel(Model): def get_state(self, cache: Optional[dict] = None) -> DropModelState: return DropModelState.from_json(cache) - def do_fit(self, dataframe: pd.DataFrame, labeled_segments: List[dict], deleted_segments: List[dict], learning_info: dict) -> None: + def do_fit( + self, + dataframe: pd.DataFrame, + labeled_segments: List[AnalyticSegment], + deleted_segments: List[AnalyticSegment], + learning_info: dict + ) -> None: data = utils.cut_dataframe(dataframe) data = data['value'] window_size = self.state.window_size diff --git a/analytics/analytics/models/general_model.py b/analytics/analytics/models/general_model.py index 421be58..d2911bd 100644 --- a/analytics/analytics/models/general_model.py +++ b/analytics/analytics/models/general_model.py @@ -1,5 +1,5 @@ from analytic_types import AnalyticUnitId -from models import Model, ModelState +from models import Model, ModelState, AnalyticSegment from typing import Union, List, Generator import utils import utils.meta @@ -43,7 +43,13 @@ class GeneralModel(Model): def get_state(self, cache: Optional[dict] = None) -> GeneralModelState: return GeneralModelState.from_json(cache) - def do_fit(self, dataframe: pd.DataFrame, labeled_segments: List[dict], deleted_segments: List[dict], learning_info: dict) -> None: + def do_fit( + self, + dataframe: pd.DataFrame, + labeled_segments: List[AnalyticSegment], + deleted_segments: List[AnalyticSegment], + learning_info: dict + ) -> None: data = utils.cut_dataframe(dataframe) data = data['value'] last_pattern_center = self.state.pattern_center diff --git a/analytics/analytics/models/jump_model.py b/analytics/analytics/models/jump_model.py index 77035e2..7a6b056 100644 --- a/analytics/analytics/models/jump_model.py +++ b/analytics/analytics/models/jump_model.py @@ -1,4 +1,4 @@ -from models import Model, ModelState +from models import Model, ModelState, AnalyticSegment import utils import utils.meta @@ -44,7 +44,13 @@ class JumpModel(Model): def get_state(self, cache: Optional[dict] = None) -> JumpModelState: return JumpModelState.from_json(cache) - def do_fit(self, dataframe: pd.DataFrame, labeled_segments: List[dict], deleted_segments: List[dict], learning_info: dict) -> None: + def do_fit( + self, + dataframe: pd.DataFrame, + labeled_segments: List[AnalyticSegment], + deleted_segments: List[AnalyticSegment], + learning_info: dict + ) -> None: data = utils.cut_dataframe(dataframe) data = data['value'] window_size = self.state.window_size diff --git a/analytics/analytics/models/model.py b/analytics/analytics/models/model.py index 071288e..e72bf31 100644 --- a/analytics/analytics/models/model.py +++ b/analytics/analytics/models/model.py @@ -6,30 +6,50 @@ from typing import Optional, List, Tuple import pandas as pd import math import logging -from analytic_types import AnalyticUnitId +from analytic_types import AnalyticUnitId, ModelCache +from analytic_types.segment import Segment import utils.meta -class Segment(AttrDict): +class AnalyticSegment(Segment): + ''' + Segment with specific analytics fields used by models: + - `labeled` / `deleted` flags + - `from` / `to` / `center` indices + - `length` + - `data` + - etc + ''' - def __init__(self, dataframe: pd.DataFrame, segment_map: dict, center_finder = None): - self.update(segment_map) - self.start = utils.timestamp_to_index(dataframe, pd.to_datetime(self['from'], unit='ms')) - self.end = utils.timestamp_to_index(dataframe, pd.to_datetime(self['to'], unit='ms')) - self.length = abs(self.end - self.start) + def __init__( + self, + from_timestamp: int, + to_timestamp: int, + labeled: bool, + deleted: bool, + dataframe: pd.DataFrame, + center_finder = None + ): + super().__init__(from_timestamp, to_timestamp) + self.labeled = labeled + self.deleted = deleted + + self.from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(self.from_timestamp, unit='ms')) + self.to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(self.to_timestamp, unit='ms')) + self.length = abs(self.to_index - self.from_index) self.__percent_of_nans = 0 if callable(center_finder): - self.center_index = center_finder(dataframe, self.start, self.end) + self.center_index = center_finder(dataframe, self.from_index, self.to_index) self.pattern_timestamp = dataframe['timestamp'][self.center_index] else: - self.center_index = self.start + math.ceil(self.length / 2) + self.center_index = self.from_index + math.ceil(self.length / 2) self.pattern_timestamp = dataframe['timestamp'][self.center_index] - assert len(dataframe['value']) >= self.end + 1, \ - 'segment {}-{} out of dataframe length={}'.format(self.start, self.end+1, len(dataframe['value'])) + assert len(dataframe['value']) >= self.to_index + 1, \ + 'segment {}-{} out of dataframe length={}'.format(self.from_index, self.to_index + 1, len(dataframe['value'])) - self.data = dataframe['value'][self.start: self.end + 1] + self.data = dataframe['value'][self.from_index: self.to_index + 1] @property def percent_of_nans(self): @@ -71,7 +91,13 @@ class Model(ABC): DEL_CONV_ERROR = 0.02 @abstractmethod - def do_fit(self, dataframe: pd.DataFrame, labeled_segments: List[dict], deleted_segments: List[dict], learning_info: dict) -> None: + def do_fit( + self, + dataframe: pd.DataFrame, + labeled_segments: List[AnalyticSegment], + deleted_segments: List[AnalyticSegment], + learning_info: dict + ) -> None: pass @abstractmethod @@ -87,7 +113,7 @@ class Model(ABC): pass @abstractmethod - def get_state(self, cache: Optional[dict] = None) -> ModelState: + def get_state(self, cache: Optional[ModelCache] = None) -> ModelState: pass def fit(self, dataframe: pd.DataFrame, segments: List[dict], id: AnalyticUnitId) -> ModelState: @@ -98,9 +124,16 @@ class Model(ABC): deleted = [] for segment_map in segments: if segment_map['labeled'] or segment_map['deleted']: - segment = Segment(dataframe, segment_map, self.find_segment_center) + segment = AnalyticSegment( + segment_map['from'], + segment_map['to'], + segment_map['labeled'], + segment_map['deleted'], + dataframe, + self.find_segment_center + ) if segment.percent_of_nans > 0.1 or len(segment.data) == 0: - logging.debug(f'segment {segment.start}-{segment.end} skip because of invalid data') + logging.debug(f'segment {segment.from_index}-{segment.to_index} skip because of invalid data') continue if segment.percent_of_nans > 0: segment.convert_nan_to_zero() @@ -113,6 +146,7 @@ class Model(ABC): if self.state.window_size == 0: self.state.window_size = math.ceil(max_length / 2) if max_length else 0 model, model_type = self.get_model_type() + # TODO: learning_info: dict -> class learning_info = self.get_parameters_from_segments(dataframe, labeled, deleted, model, model_type) self.do_fit(dataframe, labeled, deleted, learning_info) logging.debug('fit complete successful with self.state: {} for analytic unit: {}'.format(self.state, id)) @@ -169,7 +203,7 @@ class Model(ABC): learning_info['pattern_height'].append(utils.find_confidence(aligned_segment)[1]) learning_info['patterns_value'].append(aligned_segment.values.max()) if model == 'jump' or model == 'drop': - pattern_height, pattern_length = utils.find_parameters(segment.data, segment.start, model) + pattern_height, pattern_length = utils.find_parameters(segment.data, segment.from_index, model) learning_info['pattern_height'].append(pattern_height) learning_info['pattern_width'].append(pattern_length) learning_info['patterns_value'].append(aligned_segment.values[self.state.window_size]) diff --git a/analytics/analytics/models/peak_model.py b/analytics/analytics/models/peak_model.py index 53ac3f1..2f993bf 100644 --- a/analytics/analytics/models/peak_model.py +++ b/analytics/analytics/models/peak_model.py @@ -1,4 +1,4 @@ -from models import Model, ModelState +from models import Model, ModelState, AnalyticSegment import scipy.signal from scipy.fftpack import fft @@ -45,7 +45,13 @@ class PeakModel(Model): def get_state(self, cache: Optional[dict] = None) -> PeakModelState: return PeakModelState.from_json(cache) - def do_fit(self, dataframe: pd.DataFrame, labeled_segments: List[dict], deleted_segments: List[dict], learning_info: dict) -> None: + def do_fit( + self, + dataframe: pd.DataFrame, + labeled_segments: List[AnalyticSegment], + deleted_segments: List[AnalyticSegment], + learning_info: dict + ) -> None: data = utils.cut_dataframe(dataframe) data = data['value'] window_size = self.state.window_size diff --git a/analytics/analytics/models/trough_model.py b/analytics/analytics/models/trough_model.py index 5b0fc3c..47838b7 100644 --- a/analytics/analytics/models/trough_model.py +++ b/analytics/analytics/models/trough_model.py @@ -1,4 +1,4 @@ -from models import Model, ModelState +from models import Model, ModelState, AnalyticSegment import scipy.signal from scipy.fftpack import fft @@ -45,7 +45,13 @@ class TroughModel(Model): def get_state(self, cache: Optional[dict] = None) -> TroughModelState: return TroughModelState.from_json(cache) - def do_fit(self, dataframe: pd.DataFrame, labeled_segments: List[dict], deleted_segments: List[dict], learning_info: dict) -> None: + def do_fit( + self, + dataframe: pd.DataFrame, + labeled_segments: List[AnalyticSegment], + deleted_segments: List[AnalyticSegment], + learning_info: dict + ) -> None: data = utils.cut_dataframe(dataframe) data = data['value'] window_size = self.state.window_size diff --git a/analytics/analytics/utils/__init__.py b/analytics/analytics/utils/__init__.py index 851cfdd..d2c3555 100644 --- a/analytics/analytics/utils/__init__.py +++ b/analytics/analytics/utils/__init__.py @@ -1,4 +1,3 @@ from utils.common import * -from utils.segments import * from utils.time import * from utils.dataframe import * diff --git a/analytics/analytics/utils/common.py b/analytics/analytics/utils/common.py index 06bacff..1278035 100644 --- a/analytics/analytics/utils/common.py +++ b/analytics/analytics/utils/common.py @@ -11,6 +11,7 @@ import utils import logging from itertools import islice from collections import deque +from analytic_types.segment import Segment SHIFT_FACTOR = 0.05 CONFIDENCE_FACTOR = 0.5 @@ -127,24 +128,22 @@ def close_filtering(pattern_list: List[int], win_size: int) -> List[Tuple[int, i s.append([pattern_list[i]]) return s - -def merge_intersecting_intervals(intervals: List[Tuple[int, int]]) -> List[Tuple[int, int]]: +def merge_intersecting_segments(segments: List[Segment]) -> List[Segment]: ''' - At the entrance - list of intervals with start and end. - Find intersecting intervals in this list and merge it. + Find intersecting segments in segments list and merge it. ''' - if len(intervals) < 2: - return intervals - intervals = sorted(intervals) - last_couple = intervals[0] - for i in range(1,len(intervals)): - if intervals[i][0] <= last_couple[1]: - intervals[i][0] = min(last_couple[0], intervals[i][0]) - intervals[i][1] = max(last_couple[1], intervals[i][1]) - intervals[i-1] = [] - last_couple = intervals[i] - intervals = [x for x in intervals if x != []] - return intervals + if len(segments) < 2: + return segments + segments = sorted(segments, key = lambda segment: segment.from_timestamp) + previous_segment = segments[0] + for i in range(1, len(segments)): + if segments[i].from_timestamp <= previous_segment.to_timestamp: + segments[i].from_timestamp = min(previous_segment.from_timestamp, segments[i].from_timestamp) + segments[i].to_timestamp = max(previous_segment.to_timestamp, segments[i].to_timestamp) + segments[i - 1] = None + previous_segment = segments[i] + segments = [x for x in segments if x is not None] + return segments def get_start_and_end_of_segments(segments: List[List[int]]) -> List[Tuple[int, int]]: ''' diff --git a/analytics/analytics/utils/segments.py b/analytics/analytics/utils/segments.py deleted file mode 100644 index 9455529..0000000 --- a/analytics/analytics/utils/segments.py +++ /dev/null @@ -1,9 +0,0 @@ -import pandas as pd - -from utils.common import timestamp_to_index - -def parse_segment(segment: dict, dataframe: pd.DataFrame): - start = timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms')) - end = timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms')) - data = dataframe['value'][start: end + 1] - return {'from': start, 'to': end, 'data': data} diff --git a/analytics/tests/test_detectors.py b/analytics/tests/test_detectors.py index f3444ba..ea499b9 100644 --- a/analytics/tests/test_detectors.py +++ b/analytics/tests/test_detectors.py @@ -44,5 +44,5 @@ class TestAnomalyDetector(unittest.TestCase): } detector = anomaly_detector.AnomalyDetector() detect_result = detector.detect(dataframe, cache) - result = [(1523889000005.0, 1523889000005.0)] - self.assertEqual(result, detect_result.segments) + result = [{ 'from': 1523889000005.0, 'to': 1523889000005.0 }] + self.assertEqual(result, detect_result.to_json()['segments']) diff --git a/analytics/tests/test_utils.py b/analytics/tests/test_utils.py index 494e70e..5fd7145 100644 --- a/analytics/tests/test_utils.py +++ b/analytics/tests/test_utils.py @@ -1,3 +1,5 @@ +from analytic_types.segment import Segment + import utils import unittest import numpy as np @@ -291,9 +293,8 @@ class TestUtils(unittest.TestCase): segments = [[1, 2, 3, 4], [5, 6, 7], [8], [], [12, 12]] result = [[1, 4], [5, 7], [8, 8], [12, 12]] utils_result = utils.get_start_and_end_of_segments(segments) - for idx, val in enumerate(utils_result): - self.assertEqual(result[idx][0], val[0]) - self.assertEqual(result[idx][1], val[1]) + for got, expected in zip(utils_result, result): + self.assertEqual(got, expected) def test_get_start_and_end_of_segments_empty(self): segments = [] @@ -301,73 +302,51 @@ class TestUtils(unittest.TestCase): utils_result = utils.get_start_and_end_of_segments(segments) self.assertEqual(result, utils_result) - def test_merge_intersecting_intervals(self): - index = [[10, 20], [30, 40]] - result = [[10, 20], [30, 40]] - utils_result = utils.merge_intersecting_intervals(index) - for idx, val in enumerate(utils_result): - self.assertEqual(result[idx][0], val[0]) - self.assertEqual(result[idx][1], val[1]) - - def test_merge_intersecting_intervals_1(self): - index = [[10, 20], [13, 23], [15, 17], [20, 40]] - result = [[10, 40]] - utils_result = utils.merge_intersecting_intervals(index) - for idx, val in enumerate(utils_result): - self.assertEqual(result[idx][0], val[0]) - self.assertEqual(result[idx][1], val[1]) - - def test_merge_intersecting_intervals_empty(self): - index = [] - result = [] - utils_result = utils.merge_intersecting_intervals(index) - self.assertEqual(result, utils_result) - - def test_merge_intersecting_intervals_one(self): - index = [[10, 20]] - result = [[10, 20]] - utils_result = utils.merge_intersecting_intervals(index) - self.assertEqual(result, utils_result) - - def test_merge_intersecting_intervals_2(self): - index = [[10, 20], [13, 23], [25, 30], [35, 40]] - result = [[10, 23], [25, 30], [35, 40]] - utils_result = utils.merge_intersecting_intervals(index) - for idx, val in enumerate(utils_result): - self.assertEqual(result[idx][0], val[0]) - self.assertEqual(result[idx][1], val[1]) - - def test_merge_intersecting_intervals_3(self): - index = [[10, 50], [5, 40], [15, 25], [6, 50]] - result = [[5, 50]] - utils_result = utils.merge_intersecting_intervals(index) - for idx, val in enumerate(utils_result): - self.assertEqual(result[idx][0], val[0]) - self.assertEqual(result[idx][1], val[1]) - - def test_merge_intersecting_intervals_4(self): - index = [[5, 10], [10, 20], [25, 50]] - result = [[5, 20], [25, 50]] - utils_result = utils.merge_intersecting_intervals(index) - for idx, val in enumerate(utils_result): - self.assertEqual(result[idx][0], val[0]) - self.assertEqual(result[idx][1], val[1]) - - def test_merge_intersecting_intervals_5(self): - index = [[20, 40], [10, 15], [50, 60]] - result = [[10, 15], [20, 40], [50, 60]] - utils_result = utils.merge_intersecting_intervals(index) - for idx, val in enumerate(utils_result): - self.assertEqual(result[idx][0], val[0]) - self.assertEqual(result[idx][1], val[1]) + def test_merge_intersecting_segments(self): + test_cases = [ + { + 'index': [Segment(10, 20), Segment(30, 40)], + 'result': [[10, 20], [30, 40]] + }, + { + 'index': [Segment(10, 20), Segment(13, 23), Segment(15, 17), Segment(20, 40)], + 'result': [[10, 40]] + }, + { + 'index': [], + 'result': [] + }, + { + 'index': [Segment(10, 20)], + 'result': [[10, 20]] + }, + { + 'index': [Segment(10, 20), Segment(13, 23), Segment(25, 30), Segment(35, 40)], + 'result': [[10, 23], [25, 30], [35, 40]] + }, + { + 'index': [Segment(10, 50), Segment(5, 40), Segment(15, 25), Segment(6, 50)], + 'result': [[5, 50]] + }, + { + 'index': [Segment(5, 10), Segment(10, 20), Segment(25, 50)], + 'result': [[5, 20], [25, 50]] + }, + { + 'index': [Segment(20, 40), Segment(10, 15), Segment(50, 60)], + 'result': [[10, 15], [20, 40], [50, 60]] + }, + { + 'index': [Segment(20, 40), Segment(10, 20), Segment(50, 60)], + 'result': [[10, 40], [50, 60]] + }, + ] - def test_merge_intersecting_intervals_6(self): - index = [[20, 40], [10, 20], [50, 60]] - result = [[10, 40], [50, 60]] - utils_result = utils.merge_intersecting_intervals(index) - for idx, val in enumerate(utils_result): - self.assertEqual(result[idx][0], val[0]) - self.assertEqual(result[idx][1], val[1]) + for case in test_cases: + utils_result = utils.merge_intersecting_segments(case['index']) + for got, expected in zip(utils_result, case['result']): + self.assertEqual(got.from_timestamp, expected[0]) + self.assertEqual(got.to_timestamp, expected[1]) if __name__ == '__main__': unittest.main() diff --git a/server/src/services/alert_service.ts b/server/src/services/alert_service.ts index ccbef95..371383e 100644 --- a/server/src/services/alert_service.ts +++ b/server/src/services/alert_service.ts @@ -26,9 +26,7 @@ export class Alert { from: segment.from, to: segment.to }; - if(segment.params) { - alert.params = segment.params; - } + return alert; } }