Browse Source

Merge threshold segments #624 (#646)

pull/1/head
Alexandr Velikiy 6 years ago committed by rozetko
parent
commit
564ded152f
  1. 2
      analytics/analytics/analytic_types/__init__.py
  2. 10
      analytics/analytics/analytic_unit_worker.py
  3. 4
      analytics/analytics/detectors/anomaly_detector.py
  4. 2
      analytics/analytics/detectors/detector.py
  5. 15
      analytics/analytics/detectors/threshold_detector.py
  6. 10
      analytics/analytics/utils/common.py
  7. 34
      analytics/tests/test_utils.py

2
analytics/analytics/analytic_types/__init__.py

@ -17,7 +17,7 @@ AnalyticUnitId = str
ModelCache = dict
# TODO: explicit timestamp / value
TimeSeries = [List[Tuple[int, int]]]
TimeSeries = List[Tuple[int, float]]
"""
Example:

10
analytics/analytics/analytic_unit_worker.py

@ -8,7 +8,7 @@ import asyncio
import utils
from utils import get_intersected_chunks, get_chunks, prepare_data
from analytic_types import ModelCache
from analytic_types import ModelCache, TimeSeries
from analytic_types.detector_typing import DetectionResult
logger = logging.getLogger('AnalyticUnitWorker')
@ -69,14 +69,15 @@ class AnalyticUnitWorker:
if len(detections) == 0:
raise RuntimeError(f'do_detect for {self.analytic_unit_id} got empty detection results')
detection_result = self._detector.concat_detection_results(detections)
time_step = utils.find_interval(data)
detection_result = self._detector.concat_detection_results(detections, time_step)
return detection_result.to_json()
def cancel(self):
if self._training_future is not None:
self._training_future.cancel()
async def consume_data(self, data: list, cache: Optional[ModelCache]) -> Optional[dict]:
async def consume_data(self, data: TimeSeries, cache: Optional[ModelCache]) -> Optional[dict]:
window_size = self._detector.get_window_size(cache)
detections: List[DetectionResult] = []
@ -91,7 +92,8 @@ class AnalyticUnitWorker:
if len(detections) == 0:
return None
else:
detection_result = self._detector.concat_detection_results(detections)
time_step = utils.find_interval(data)
detection_result = self._detector.concat_detection_results(detections, time_step)
return detection_result.to_json()
async def process_data(self, data: list, cache: ModelCache) -> dict:

4
analytics/analytics/detectors/anomaly_detector.py

@ -155,13 +155,13 @@ class AnomalyDetector(ProcessingDetector):
seasonality = cache['seasonality'] // cache['timeStep']
return max(level, seasonality)
def concat_detection_results(self, detections: List[DetectionResult]) -> DetectionResult:
def concat_detection_results(self, detections: List[DetectionResult], time_step: int) -> DetectionResult:
result = DetectionResult()
for detection in detections:
result.segments.extend(detection.segments)
result.last_detection_time = detection.last_detection_time
result.cache = detection.cache
result.segments = utils.merge_intersecting_segments(result.segments)
result.segments = utils.merge_intersecting_segments(result.segments, time_step)
return result
# TODO: ModelCache -> ModelState (don't use string literals)

2
analytics/analytics/detectors/detector.py

@ -31,7 +31,7 @@ class Detector(ABC):
def is_detection_intersected(self) -> bool:
return True
def concat_detection_results(self, detections: List[DetectionResult]) -> DetectionResult:
def concat_detection_results(self, detections: List[DetectionResult], time_step: int) -> DetectionResult:
result = DetectionResult()
for detection in detections:
result.segments.extend(detection.segments)

15
analytics/analytics/detectors/threshold_detector.py

@ -9,7 +9,7 @@ from analytic_types.detector_typing import DetectionResult
from analytic_types.segment import Segment
from detectors import Detector
from time import time
from utils import convert_sec_to_ms, convert_pd_timestamp_to_ms
import utils
logger = log.getLogger('THRESHOLD_DETECTOR')
@ -42,7 +42,7 @@ class ThresholdDetector(Detector):
segments = []
for index, row in dataframe.iterrows():
current_value = row['value']
current_timestamp = convert_pd_timestamp_to_ms(row['timestamp'])
current_timestamp = utils.convert_pd_timestamp_to_ms(row['timestamp'])
segment = Segment(current_timestamp, current_timestamp)
# TODO: merge segments
if pd.isnull(current_value):
@ -67,7 +67,7 @@ class ThresholdDetector(Detector):
segments.append(segment)
last_entry = dataframe.iloc[-1]
last_detection_time = convert_pd_timestamp_to_ms(last_entry['timestamp'])
last_detection_time = utils.convert_pd_timestamp_to_ms(last_entry['timestamp'])
return DetectionResult(cache, segments, last_detection_time)
@ -77,3 +77,12 @@ class ThresholdDetector(Detector):
def get_window_size(self, cache: Optional[ModelCache]) -> int:
return self.WINDOW_SIZE
def concat_detection_results(self, detections: List[DetectionResult], time_step: int) -> DetectionResult:
result = DetectionResult()
for detection in detections:
result.segments.extend(detection.segments)
result.last_detection_time = detection.last_detection_time
result.cache = detection.cache
result.segments = utils.merge_intersecting_segments(result.segments, time_step)
return result

10
analytics/analytics/utils/common.py

@ -11,6 +11,7 @@ import utils
import logging
from itertools import islice
from collections import deque
from analytic_types import TimeSeries
from analytic_types.segment import Segment
SHIFT_FACTOR = 0.05
@ -128,7 +129,7 @@ def close_filtering(pattern_list: List[int], win_size: int) -> List[Tuple[int, i
s.append([pattern_list[i]])
return s
def merge_intersecting_segments(segments: List[Segment]) -> List[Segment]:
def merge_intersecting_segments(segments: List[Segment], time_step: int) -> List[Segment]:
'''
Find intersecting segments in segments list and merge it.
'''
@ -137,7 +138,7 @@ def merge_intersecting_segments(segments: List[Segment]) -> List[Segment]:
segments = sorted(segments, key = lambda segment: segment.from_timestamp)
previous_segment = segments[0]
for i in range(1, len(segments)):
if segments[i].from_timestamp <= previous_segment.to_timestamp:
if segments[i].from_timestamp <= previous_segment.to_timestamp + time_step:
segments[i].from_timestamp = min(previous_segment.from_timestamp, segments[i].from_timestamp)
segments[i].to_timestamp = max(previous_segment.to_timestamp, segments[i].to_timestamp)
segments[i - 1] = None
@ -145,6 +146,11 @@ def merge_intersecting_segments(segments: List[Segment]) -> List[Segment]:
segments = [x for x in segments if x is not None]
return segments
def find_interval(data: TimeSeries) -> int:
if len(data) < 2:
raise ValueError('Can`t find interval: length of data must be at least 2')
return int(data[1][0] - data[0][0])
def get_start_and_end_of_segments(segments: List[List[int]]) -> List[Tuple[int, int]]:
'''
find start and end of segment: [1, 2, 3, 4] -> [1, 4]

34
analytics/tests/test_utils.py

@ -306,44 +306,58 @@ class TestUtils(unittest.TestCase):
test_cases = [
{
'index': [Segment(10, 20), Segment(30, 40)],
'result': [[10, 20], [30, 40]]
'result': [[10, 20], [30, 40]],
'step': 0,
},
{
'index': [Segment(10, 20), Segment(13, 23), Segment(15, 17), Segment(20, 40)],
'result': [[10, 40]]
'result': [[10, 40]],
'step': 0,
},
{
'index': [],
'result': []
'result': [],
'step': 0,
},
{
'index': [Segment(10, 20)],
'result': [[10, 20]]
'result': [[10, 20]],
'step': 0,
},
{
'index': [Segment(10, 20), Segment(13, 23), Segment(25, 30), Segment(35, 40)],
'result': [[10, 23], [25, 30], [35, 40]]
'result': [[10, 23], [25, 30], [35, 40]],
'step': 0,
},
{
'index': [Segment(10, 50), Segment(5, 40), Segment(15, 25), Segment(6, 50)],
'result': [[5, 50]]
'result': [[5, 50]],
'step': 0,
},
{
'index': [Segment(5, 10), Segment(10, 20), Segment(25, 50)],
'result': [[5, 20], [25, 50]]
'result': [[5, 20], [25, 50]],
'step': 0,
},
{
'index': [Segment(20, 40), Segment(10, 15), Segment(50, 60)],
'result': [[10, 15], [20, 40], [50, 60]]
'result': [[10, 15], [20, 40], [50, 60]],
'step': 0,
},
{
'index': [Segment(20, 40), Segment(10, 20), Segment(50, 60)],
'result': [[10, 40], [50, 60]]
'result': [[10, 40], [50, 60]],
'step': 0,
},
{
'index': [Segment(10, 10), Segment(20, 20), Segment(30, 30)],
'result': [[10, 30]],
'step': 10,
},
]
for case in test_cases:
utils_result = utils.merge_intersecting_segments(case['index'])
utils_result = utils.merge_intersecting_segments(case['index'], case['step'])
for got, expected in zip(utils_result, case['result']):
self.assertEqual(got.from_timestamp, expected[0])
self.assertEqual(got.to_timestamp, expected[1])

Loading…
Cancel
Save