|
|
|
@ -4,32 +4,34 @@ import logging
|
|
|
|
|
import pandas as pd |
|
|
|
|
from typing import Optional, Union |
|
|
|
|
from models import ModelCache |
|
|
|
|
from concurrent.futures import Executor, CancelledError, TimeoutError |
|
|
|
|
import concurrent.futures |
|
|
|
|
import asyncio |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger('AnalyticUnitWorker') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AnalyticUnitWorker: |
|
|
|
|
|
|
|
|
|
def __init__(self, analytic_unit_id: str, detector: detectors.Detector, executor: Executor): |
|
|
|
|
def __init__(self, analytic_unit_id: str, detector: detectors.Detector, executor: concurrent.futures.Executor): |
|
|
|
|
self.analytic_unit_id = analytic_unit_id |
|
|
|
|
self._detector = detector |
|
|
|
|
self._executor: Executor = executor |
|
|
|
|
self._executor: concurrent.futures.Executor = executor |
|
|
|
|
self._training_future: asyncio.Future = None |
|
|
|
|
|
|
|
|
|
async def do_train( |
|
|
|
|
self, payload: Union[list, dict], data: pd.DataFrame, cache: Optional[ModelCache] |
|
|
|
|
) -> ModelCache: |
|
|
|
|
self._training_future = self._executor.submit( |
|
|
|
|
cfuture: concurrent.futures.Future = self._executor.submit( |
|
|
|
|
self._detector.train, data, payload, cache |
|
|
|
|
) |
|
|
|
|
self._training_future = asyncio.wrap_future(cfuture) |
|
|
|
|
try: |
|
|
|
|
new_cache: ModelCache = self._training_future.result(timeout = config.LEARNING_TIMEOUT) |
|
|
|
|
new_cache: ModelCache = await asyncio.wait_for(self._training_future, timeout = config.LEARNING_TIMEOUT) |
|
|
|
|
return new_cache |
|
|
|
|
except CancelledError: |
|
|
|
|
return cache |
|
|
|
|
except TimeoutError: |
|
|
|
|
except asyncio.CancelledError: |
|
|
|
|
return None |
|
|
|
|
except asyncio.TimeoutError: |
|
|
|
|
raise Exception('Timeout ({}s) exceeded while learning'.format(config.LEARNING_TIMEOUT)) |
|
|
|
|
|
|
|
|
|
async def do_detect(self, data: pd.DataFrame, cache: Optional[ModelCache]) -> dict: |
|
|
|
|