Browse Source

Error: index out of bounds (#538)

pull/1/head
Evgeny Smyshlyaev 6 years ago committed by GitHub
parent
commit
14f616eb15
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 4
      analytics/analytics/models/model.py
  2. 3
      analytics/analytics/utils/dataframe.py
  3. 10
      analytics/tests/test_dataset.py

4
analytics/analytics/models/model.py

@ -76,12 +76,16 @@ class Model(ABC):
if segment_map['labeled'] or segment_map['deleted']:
segment = Segment(dataframe, segment_map, self.find_segment_center)
if segment.percent_of_nans > 0.1 or len(segment.data) == 0:
logging.debug(f'segment {segment_map.start}-{segment_map.end} skip because of invalid data')
continue
if segment.percent_of_nans > 0:
segment.convert_nan_to_zero()
max_length = max(segment.length, max_length)
if segment.labeled: labeled.append(segment)
if segment.deleted: deleted.append(segment)
assert len(labeled) > 0, f'labeled list empty, skip fitting for {id}'
if self.state.get('WINDOW_SIZE') == 0:
self.state['WINDOW_SIZE'] = math.ceil(max_length / 2) if max_length else 0
model, model_type = self.get_model_type()

3
analytics/analytics/utils/dataframe.py

@ -22,6 +22,8 @@ def get_intersected_chunks(data: list, intersection: int, chunk_size: int) -> Ge
intersection - length of intersection.
chunk_size - length of chunk
"""
assert chunk_size > 0, 'chunk size must be great than zero'
assert intersection > 0, 'intersection length must be great than zero'
data_len = len(data)
@ -48,6 +50,7 @@ def get_chunks(data: list, chunk_size: int) -> Generator[list, None, None]:
Returns generator that splits dataframe on non-intersected segments.
chunk_size - length of chunk
"""
assert chunk_size > 0, 'chunk size must be great than zero'
chunks_iterables = [iter(data)] * chunk_size
result_chunks = zip(*chunks_iterables)

10
analytics/tests/test_dataset.py

@ -20,12 +20,12 @@ class TestDataset(unittest.TestCase):
models.PeakModel(),
models.TroughModel()
]
try:
for model in model_instances:
model_name = model.__class__.__name__
for model in model_instances:
model_name = model.__class__.__name__
with self.assertRaises(AssertionError):
model.fit(dataframe, segments, 'test', dict())
except ValueError:
self.fail('Model {} raised unexpectedly'.format(model_name))
def test_peak_antisegments(self):
data_val = [1.0, 1.0, 1.0, 2.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 5.0, 7.0, 5.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Loading…
Cancel
Save