|
|
|
@ -35,11 +35,11 @@ class StepDetector:
|
|
|
|
|
segment_data = data[segment['start'] : segment['finish'] + 1] |
|
|
|
|
segment_min = min(segment_data) |
|
|
|
|
segment_max = max(segment_data) |
|
|
|
|
confidences.append(0.24 * (segment_max - segment_min)) |
|
|
|
|
confidences.append(0.20 * (segment_max - segment_min)) |
|
|
|
|
flat_segment = segment_data.rolling(window=5).mean() |
|
|
|
|
|
|
|
|
|
segment_min_index = flat_segment.idxmin() - 5 |
|
|
|
|
labeled_drop = data[segment_min_index - 60 : segment_min_index + 60] |
|
|
|
|
labeled_drop = data[segment_min_index - 120 : segment_min_index + 120] |
|
|
|
|
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop) |
|
|
|
|
convolve_list.append(max(convolve)) |
|
|
|
|
|
|
|
|
@ -91,11 +91,11 @@ class StepDetector:
|
|
|
|
|
segments.remove(item) |
|
|
|
|
|
|
|
|
|
delete_list = [] |
|
|
|
|
pattern_data = all_max_flatten_data[segments[0] - 60 : segments[0] + 60] |
|
|
|
|
pattern_data = all_max_flatten_data[segments[0] - 120 : segments[0] + 120] |
|
|
|
|
for segment in segments: |
|
|
|
|
convol_data = all_max_flatten_data[segment - 60 : segment + 60] |
|
|
|
|
convol_data = all_max_flatten_data[segment - 120 : segment + 120] |
|
|
|
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data) |
|
|
|
|
if max(conv) > self.convolve_max * 1.05: |
|
|
|
|
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9: |
|
|
|
|
delete_list.append(segment) |
|
|
|
|
for item in delete_list: |
|
|
|
|
segments.remove(item) |
|
|
|
|