|
|
@ -17,16 +17,16 @@ logger = logging.getLogger('analytic_toolset') |
|
|
|
|
|
|
|
|
|
|
|
class GeneralDetector: |
|
|
|
class GeneralDetector: |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, anomaly_name, data): |
|
|
|
def __init__(self, anomaly_name): |
|
|
|
self.anomaly_name = anomaly_name |
|
|
|
self.anomaly_name = anomaly_name |
|
|
|
self.model = None |
|
|
|
self.model = None |
|
|
|
self.__load_model() |
|
|
|
self.__load_model() |
|
|
|
|
|
|
|
|
|
|
|
async def learn(self, segments): |
|
|
|
async def learn(self, segments, data): |
|
|
|
logger.info("Start to learn for anomaly_name='%s'" % self.anomaly_name) |
|
|
|
logger.info("Start to learn for anomaly_name='%s'" % self.anomaly_name) |
|
|
|
|
|
|
|
|
|
|
|
confidence = 0.02 |
|
|
|
confidence = 0.02 |
|
|
|
dataframe = self.data_prov.get_dataframe() |
|
|
|
dataframe = data # make dataframae from array |
|
|
|
start_index, stop_index = 0, len(dataframe) |
|
|
|
start_index, stop_index = 0, len(dataframe) |
|
|
|
if len(segments) > 0: |
|
|
|
if len(segments) > 0: |
|
|
|
confidence = 0.0 |
|
|
|
confidence = 0.0 |
|
|
|