|
|
|
from models import Model
|
|
|
|
|
|
|
|
import utils
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
import scipy.signal
|
|
|
|
from scipy.fftpack import fft
|
|
|
|
from scipy.signal import argrelextrema
|
|
|
|
import math
|
|
|
|
from scipy.stats import gaussian_kde
|
|
|
|
from scipy.stats import norm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GeneralModel(Model):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super()
|
|
|
|
self.segments = []
|
|
|
|
self.ipats = []
|
|
|
|
self.model_gen = []
|
|
|
|
self.state = {
|
|
|
|
'convolve_max': 240,
|
|
|
|
'convolve_min': 200,
|
|
|
|
'WINDOW_SIZE': 240,
|
|
|
|
}
|
|
|
|
self.all_conv = []
|
|
|
|
|
|
|
|
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None:
|
|
|
|
data = dataframe['value']
|
|
|
|
convolve_list = []
|
|
|
|
patterns_list = []
|
|
|
|
for segment in segments:
|
|
|
|
if segment['labeled']:
|
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
|
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
|
|
|
|
|
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1]
|
|
|
|
if len(segment_data) == 0:
|
|
|
|
continue
|
|
|
|
x = segment_from_index + int((segment_to_index - segment_from_index) / 2)
|
|
|
|
self.ipats.append(x)
|
|
|
|
segment_data = data[x - self.state['WINDOW_SIZE'] : x + self.state['WINDOW_SIZE']]
|
|
|
|
segment_min = min(segment_data)
|
|
|
|
segment_data = segment_data - segment_min
|
|
|
|
patterns_list.append(segment_data)
|
|
|
|
|
|
|
|
self.model_gen = utils.get_av_model(patterns_list)
|
|
|
|
for n in range(len(segments)): #labeled segments
|
|
|
|
labeled_data = data[self.ipats[n] - self.state['WINDOW_SIZE']: self.ipats[n] + self.state['WINDOW_SIZE'] + 1]
|
|
|
|
labeled_data = labeled_data - min(labeled_data)
|
|
|
|
auto_convolve = scipy.signal.fftconvolve(labeled_data, labeled_data)
|
|
|
|
convolve_data = scipy.signal.fftconvolve(labeled_data, self.model_gen)
|
|
|
|
convolve_list.append(max(auto_convolve))
|
|
|
|
convolve_list.append(max(convolve_data))
|
|
|
|
|
|
|
|
if len(convolve_list) > 0:
|
|
|
|
self.state['convolve_max'] = float(max(convolve_list))
|
|
|
|
else:
|
|
|
|
self.state['convolve_max'] = self.state['WINDOW_SIZE'] / 3
|
|
|
|
|
|
|
|
if len(convolve_list) > 0:
|
|
|
|
self.state['convolve_min'] = float(min(convolve_list))
|
|
|
|
else:
|
|
|
|
self.state['convolve_min'] = self.state['WINDOW_SIZE'] / 3
|
|
|
|
|
|
|
|
def do_predict(self, dataframe: pd.DataFrame) -> list:
|
|
|
|
data = dataframe['value']
|
|
|
|
pat_data = self.model_gen
|
|
|
|
y = max(pat_data)
|
|
|
|
|
|
|
|
for i in range(self.state['WINDOW_SIZE'] * 2, len(data)):
|
|
|
|
watch_data = data[i - self.state['WINDOW_SIZE'] * 2: i]
|
|
|
|
w = min(watch_data)
|
|
|
|
watch_data = watch_data - w
|
|
|
|
conv = scipy.signal.fftconvolve(watch_data, pat_data)
|
|
|
|
self.all_conv.append(max(conv))
|
|
|
|
all_conv_peaks = utils.peak_finder(self.all_conv, self.state['WINDOW_SIZE'] * 2)
|
|
|
|
|
|
|
|
filtered = self.__filter_prediction(all_conv_peaks, data)
|
|
|
|
return set(item + self.state['WINDOW_SIZE'] for item in filtered)
|
|
|
|
|
|
|
|
def __filter_prediction(self, segments: list, data: list):
|
|
|
|
if len(segments) == 0 or len(self.ipats) == 0:
|
|
|
|
return []
|
|
|
|
delete_list = []
|
|
|
|
|
|
|
|
for val in segments:
|
|
|
|
if self.all_conv[val] < self.state['convolve_min'] * 0.8:
|
|
|
|
delete_list.append(val)
|
|
|
|
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
return set(segments)
|