|
|
|
from detectors.general_detector.supervised_algorithm import SupervisedAlgorithm
|
|
|
|
import utils
|
|
|
|
from grafana_data_provider import GrafanaDataProvider
|
|
|
|
from data_preprocessor import data_preprocessor
|
|
|
|
import pandas as pd
|
|
|
|
import logging
|
|
|
|
from urllib.parse import urlparse
|
|
|
|
import config
|
|
|
|
import os.path
|
|
|
|
import json
|
|
|
|
|
|
|
|
|
|
|
|
NANOSECONDS_IN_MS = 1000000
|
|
|
|
|
|
|
|
logger = logging.getLogger('analytic_toolset')
|
|
|
|
|
|
|
|
|
|
|
|
class GeneralDetector:
|
|
|
|
|
|
|
|
def __init__(self, anomaly_name, data):
|
|
|
|
self.anomaly_name = anomaly_name
|
|
|
|
self.model = None
|
|
|
|
self.__load_model()
|
|
|
|
|
|
|
|
async def learn(self, segments):
|
|
|
|
logger.info("Start to learn for anomaly_name='%s'" % self.anomaly_name)
|
|
|
|
|
|
|
|
confidence = 0.02
|
|
|
|
dataframe = self.data_prov.get_dataframe()
|
|
|
|
start_index, stop_index = 0, len(dataframe)
|
|
|
|
if len(segments) > 0:
|
|
|
|
confidence = 0.0
|
|
|
|
min_time, max_time = utils.segments_box(segments)
|
|
|
|
dataframe = dataframe[dataframe['timestamp'] <= max_time]
|
|
|
|
dataframe = dataframe[dataframe['timestamp'] >= min_time]
|
|
|
|
|
|
|
|
train_augmented = self.preprocessor.get_augmented_data(
|
|
|
|
dataframe.index[0],
|
|
|
|
dataframe.index[-1],
|
|
|
|
segments
|
|
|
|
)
|
|
|
|
|
|
|
|
self.model = self.create_algorithm()
|
|
|
|
await self.model.fit(train_augmented, confidence)
|
|
|
|
if len(segments) > 0:
|
|
|
|
last_dataframe_time = dataframe.iloc[-1]['timestamp']
|
|
|
|
last_prediction_time = int(last_dataframe_time.timestamp() * 1000)
|
|
|
|
else:
|
|
|
|
last_prediction_time = 0
|
|
|
|
|
|
|
|
self.__save_model()
|
|
|
|
logger.info("Learning is finished for anomaly_name='%s'" % self.anomaly_name)
|
|
|
|
return last_prediction_time
|
|
|
|
|
|
|
|
async def predict(self, last_prediction_time):
|
|
|
|
logger.info("Start to predict for anomaly type='%s'" % self.anomaly_name)
|
|
|
|
last_prediction_time = pd.to_datetime(last_prediction_time, unit='ms')
|
|
|
|
|
|
|
|
start_index = self.data_prov.get_upper_bound(last_prediction_time)
|
|
|
|
stop_index = self.data_prov.size()
|
|
|
|
last_prediction_time = int(last_prediction_time.value / NANOSECONDS_IN_MS)
|
|
|
|
|
|
|
|
predicted_anomalies = []
|
|
|
|
if start_index < stop_index:
|
|
|
|
max_chunk_size = 50000
|
|
|
|
predicted = pd.Series()
|
|
|
|
for index in range(start_index, stop_index, max_chunk_size):
|
|
|
|
chunk_start = index
|
|
|
|
chunk_finish = min(index + max_chunk_size, stop_index)
|
|
|
|
predict_augmented = self.preprocessor.get_augmented_data(chunk_start, chunk_finish)
|
|
|
|
|
|
|
|
assert(len(predict_augmented) == chunk_finish - chunk_start)
|
|
|
|
|
|
|
|
predicted_current = await self.model.predict(predict_augmented)
|
|
|
|
predicted = pd.concat([predicted, predicted_current])
|
|
|
|
predicted_anomalies = self.preprocessor.inverse_transform_anomalies(predicted)
|
|
|
|
|
|
|
|
last_row = self.data_prov.get_data_range(stop_index - 1, stop_index)
|
|
|
|
|
|
|
|
last_dataframe_time = last_row.iloc[0]['timestamp']
|
|
|
|
predicted_anomalies = utils.anomalies_to_timestamp(predicted_anomalies)
|
|
|
|
last_prediction_time = int(last_dataframe_time.timestamp() * 1000)
|
|
|
|
|
|
|
|
logger.info("Predicting is finished for anomaly type='%s'" % self.anomaly_name)
|
|
|
|
return predicted_anomalies, last_prediction_time
|
|
|
|
|
|
|
|
def synchronize_data(self):
|
|
|
|
self.data_prov.synchronize()
|
|
|
|
self.preprocessor.set_data_provider(self.data_prov)
|
|
|
|
self.preprocessor.synchronize()
|
|
|
|
|
|
|
|
def create_algorithm(self):
|
|
|
|
return SupervisedAlgorithm()
|
|
|
|
|
|
|
|
def __save_model(self):
|
|
|
|
# TODO: use data_service to save anything
|
|
|
|
|
|
|
|
def __load_model(self):
|
|
|
|
# TODO: use data_service to save anything
|