You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
6.0 KiB
139 lines
6.0 KiB
6 years ago
|
import numpy as np
|
||
|
import pickle
|
||
|
import scipy.signal
|
||
|
from scipy.fftpack import fft
|
||
|
from scipy.signal import argrelextrema
|
||
|
import math
|
||
|
|
||
|
def is_intersect(target_segment, segments):
|
||
|
for segment in segments:
|
||
|
start = max(segment['start'], target_segment[0])
|
||
|
finish = min(segment['finish'], target_segment[1])
|
||
|
if start <= finish:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
def exponential_smoothing(series, alpha):
|
||
|
result = [series[0]]
|
||
|
for n in range(1, len(series)):
|
||
|
result.append(alpha * series[n] + (1 - alpha) * result[n-1])
|
||
|
return result
|
||
|
|
||
|
class Jumpdetector:
|
||
|
|
||
|
def __init__(self, pattern):
|
||
|
self.pattern = pattern
|
||
|
self.segments = []
|
||
|
self.confidence = 1.5
|
||
|
self.convolve_max = 120
|
||
|
|
||
|
def fit(self, dataframe, segments):
|
||
|
data = dataframe['value']
|
||
|
confidences = []
|
||
|
convolve_list = []
|
||
|
for segment in segments:
|
||
|
if segment['labeled']:
|
||
|
segment_data = data[segment['start'] : segment['finish'] + 1]
|
||
|
segment_min = min(segment_data)
|
||
|
segment_max = max(segment_data)
|
||
|
confidences.append(0.20 * (segment_max - segment_min))
|
||
|
flat_segment = segment_data.rolling(window=5).mean() #сглаживаем сегмент
|
||
|
# в идеале нужно посмотреть гистограмму сегмента и выбрать среднее значение,
|
||
|
# далее от него брать + -120
|
||
|
segment_summ = 0
|
||
|
for val in flat_segment:
|
||
|
segment_summ += val
|
||
|
segment_mid = segment_summ / len(flat_segment) #посчитать нормально среднее значение/медиану
|
||
|
for ind in range(1, len(flat_segment) - 1):
|
||
|
if flat_segment[ind + 1] > segment_mid and flat_segment[ind - 1] < segment_mid:
|
||
|
flat_mid_index = ind # найти пересечение средней и графика, получить его индекс
|
||
|
segment_mid_index = flat_mid_index - 5
|
||
|
labeled_drop = data[segment_mid_index - 120 : segment_mid_index + 120]
|
||
|
labeled_min = min(labeled_drop)
|
||
|
for value in labeled_drop: # обрезаем
|
||
|
value = value - labeled_min
|
||
|
labeled_max = max(labeled_drop)
|
||
|
for value in labeled_drop: # нормируем
|
||
|
value = value / labeled_max
|
||
|
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
|
||
|
convolve_list.append(max(convolve)) # сворачиваем паттерн
|
||
|
# плюс надо впихнуть сюда логистическую сигмоиду и поиск альфы
|
||
|
|
||
|
if len(confidences) > 0:
|
||
|
self.confidence = min(confidences)
|
||
|
else:
|
||
|
self.confidence = 1.5
|
||
|
|
||
|
if len(convolve_list) > 0:
|
||
|
self.convolve_max = max(convolve_list)
|
||
|
else:
|
||
|
self.convolve_max = 120 # макс метрика свертки равна отступу(120), вау!
|
||
|
|
||
|
def logistic_sigmoid(x1, x2, alpha, height):
|
||
|
distribution = []
|
||
|
for i in range(x, y):
|
||
|
F = 1 * height / (1 + math.exp(-i * alpha))
|
||
|
distribution.append(F)
|
||
|
return distribution
|
||
|
|
||
|
def predict(self, dataframe):
|
||
|
data = dataframe['value']
|
||
|
|
||
|
result = self.__predict(data)
|
||
|
result.sort()
|
||
|
|
||
|
if len(self.segments) > 0:
|
||
|
result = [segment for segment in result if not is_intersect(segment, self.segments)]
|
||
|
return result
|
||
|
|
||
|
def __predict(self, data):
|
||
|
window_size = 24
|
||
|
all_max_flatten_data = data.rolling(window=window_size).mean()
|
||
|
extrema_list = []
|
||
|
# добавить все пересечения экспоненты со сглаженным графиком
|
||
|
#
|
||
|
for i in exponential_smoothing(data + self.confidence, 0.02):
|
||
|
extrema_list.append(i)
|
||
|
|
||
|
segments = []
|
||
|
for i in all_mins:
|
||
|
if all_max_flatten_data[i] > extrema_list[i]:
|
||
|
segments.append(i - window_size)
|
||
|
|
||
|
return [(x - 1, x + 1) for x in self.__filter_prediction(segments, all_max_flatten_data)]
|
||
|
|
||
|
def __filter_prediction(self, segments, all_max_flatten_data):
|
||
|
delete_list = []
|
||
|
variance_error = int(0.004 * len(all_max_flatten_data))
|
||
|
if variance_error > 200:
|
||
|
variance_error = 200
|
||
|
for i in range(1, len(segments)):
|
||
|
if segments[i] < segments[i - 1] + variance_error:
|
||
|
delete_list.append(segments[i])
|
||
|
for item in delete_list:
|
||
|
segments.remove(item)
|
||
|
|
||
|
# изменить секонд делит лист, сделать для свертки с сигмоидой
|
||
|
delete_list = []
|
||
|
pattern_data = all_max_flatten_data[segments[0] - 120 : segments[0] + 120]
|
||
|
for segment in segments:
|
||
|
convol_data = all_max_flatten_data[segment - 120 : segment + 120]
|
||
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
|
||
|
if max(conv) > self.convolve_max * 1.1 or max(conv) < self.convolve_max * 0.9:
|
||
|
delete_list.append(segment)
|
||
|
for item in delete_list:
|
||
|
segments.remove(item)
|
||
|
|
||
|
return segments
|
||
|
|
||
|
def save(self, model_filename):
|
||
|
with open(model_filename, 'wb') as file:
|
||
|
pickle.dump((self.confidence, self.convolve_max), file)
|
||
|
|
||
|
def load(self, model_filename):
|
||
|
try:
|
||
|
with open(model_filename, 'rb') as file:
|
||
|
(self.confidence, self.convolve_max) = pickle.load(file)
|
||
|
except:
|
||
|
pass
|