|
|
|
from models import Model, AnalyticUnitCache
|
|
|
|
|
|
|
|
import scipy.signal
|
|
|
|
from scipy.fftpack import fft
|
|
|
|
from scipy.signal import argrelextrema
|
|
|
|
|
|
|
|
import utils
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
WINDOW_SIZE = 240
|
|
|
|
|
|
|
|
class TroughModel(Model):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super()
|
|
|
|
self.segments = []
|
|
|
|
self.ipeaks = []
|
|
|
|
self.state = {
|
|
|
|
'confidence': 1.5,
|
|
|
|
'convolve_max': 570000
|
|
|
|
}
|
|
|
|
|
|
|
|
def fit(self, dataframe: pd.DataFrame, segments: list, cache: Optional[AnalyticUnitCache]) -> AnalyticUnitCache:
|
|
|
|
if type(cache) is AnalyticUnitCache:
|
|
|
|
self.state = cache
|
|
|
|
|
|
|
|
self.segments = segments
|
|
|
|
data = dataframe['value']
|
|
|
|
|
|
|
|
confidences = []
|
|
|
|
convolve_list = []
|
|
|
|
for segment in segments:
|
|
|
|
if segment['labeled']:
|
|
|
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
|
|
|
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
|
|
|
|
|
|
|
|
segment_data = data[segment_from_index: segment_to_index + 1]
|
|
|
|
if len(segment_data) == 0:
|
|
|
|
continue
|
|
|
|
segment_min = min(segment_data)
|
|
|
|
segment_max = max(segment_data)
|
|
|
|
confidences.append(0.2 * (segment_max - segment_min))
|
|
|
|
flat_segment = segment_data.rolling(window=5).mean()
|
|
|
|
flat_segment = flat_segment.dropna()
|
|
|
|
segment_min_index = flat_segment.idxmin() #+ segment['start']
|
|
|
|
self.ipeaks.append(segment_min_index)
|
|
|
|
labeled_drop = data[segment_min_index - WINDOW_SIZE : segment_min_index + WINDOW_SIZE]
|
|
|
|
labeled_min = min(labeled_drop)
|
|
|
|
for value in labeled_drop:
|
|
|
|
value = value - labeled_min
|
|
|
|
convolve = scipy.signal.fftconvolve(labeled_drop, labeled_drop)
|
|
|
|
convolve_list.append(max(convolve))
|
|
|
|
|
|
|
|
if len(confidences) > 0:
|
|
|
|
self.state['confidence'] = float(min(confidences))
|
|
|
|
else:
|
|
|
|
self.state['confidence'] = 1.5
|
|
|
|
|
|
|
|
if len(convolve_list) > 0:
|
|
|
|
self.state['convolve_max'] = float(max(convolve_list))
|
|
|
|
else:
|
|
|
|
self.state['convolve_max'] = 570000
|
|
|
|
|
|
|
|
return self.state
|
|
|
|
|
|
|
|
def do_predict(self, dataframe: pd.DataFrame):
|
|
|
|
data = dataframe['value']
|
|
|
|
window_size = 24
|
|
|
|
all_max_flatten_data = data.rolling(window=window_size).mean()
|
|
|
|
all_mins = argrelextrema(np.array(all_max_flatten_data), np.less)[0]
|
|
|
|
|
|
|
|
extrema_list = []
|
|
|
|
for i in utils.exponential_smoothing(data - self.state['confidence'], 0.02):
|
|
|
|
extrema_list.append(i)
|
|
|
|
|
|
|
|
segments = []
|
|
|
|
for i in all_mins:
|
|
|
|
if all_max_flatten_data[i] < extrema_list[i]:
|
|
|
|
segments.append(i)
|
|
|
|
test = dataframe['timestamp'][1].value
|
|
|
|
filtered = self.__filter_prediction(segments, data)
|
|
|
|
# TODO: convert from ns to ms more proper way (not dividing by 10^6)
|
|
|
|
return [(dataframe['timestamp'][x - 1].value / 1000000, dataframe['timestamp'][x + 1].value / 1000000) for x in filtered]
|
|
|
|
|
|
|
|
def __filter_prediction(self, segments: list, all_max_flatten_data: list):
|
|
|
|
delete_list = []
|
|
|
|
variance_error = int(0.004 * len(all_max_flatten_data))
|
|
|
|
if variance_error > 100:
|
|
|
|
variance_error = 100
|
|
|
|
for i in range(1, len(segments)):
|
|
|
|
if segments[i] < segments[i - 1] + variance_error:
|
|
|
|
delete_list.append(segments[i])
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
delete_list = []
|
|
|
|
if len(segments) == 0 or len(self.ipeaks) == 0 :
|
|
|
|
segments = []
|
|
|
|
return segments
|
|
|
|
|
|
|
|
pattern_data = all_max_flatten_data[self.ipeaks[0] - WINDOW_SIZE : self.ipeaks[0] + WINDOW_SIZE]
|
|
|
|
for segment in segments:
|
|
|
|
if segment > WINDOW_SIZE:
|
|
|
|
convol_data = all_max_flatten_data[segment - WINDOW_SIZE : segment + WINDOW_SIZE]
|
|
|
|
conv = scipy.signal.fftconvolve(pattern_data, convol_data)
|
|
|
|
if max(conv) > self.state['convolve_max'] * 1.2 or max(conv) < self.state['convolve_max'] * 0.8:
|
|
|
|
delete_list.append(segment)
|
|
|
|
else:
|
|
|
|
delete_list.append(segment)
|
|
|
|
for item in delete_list:
|
|
|
|
segments.remove(item)
|
|
|
|
|
|
|
|
return segments
|