You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
5.8 KiB
139 lines
5.8 KiB
![]()
7 years ago
|
from models import Model
|
||
7 years ago
|
|
||
|
import scipy.signal
|
||
|
from scipy.fftpack import fft
|
||
|
from scipy.signal import argrelextrema
|
||
|
|
||
|
import utils
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
|
||
![]()
7 years ago
|
SMOOTHING_COEFF = 2400
|
||
|
EXP_SMOOTHING_FACTOR = 0.01
|
||
7 years ago
|
|
||
|
class PeakModel(Model):
|
||
|
|
||
|
def __init__(self):
|
||
|
super()
|
||
|
self.segments = []
|
||
|
self.ipeaks = []
|
||
![]()
7 years ago
|
self.model_peak = []
|
||
7 years ago
|
self.state = {
|
||
|
'confidence': 1.5,
|
||
![]()
7 years ago
|
'convolve_max': 570000,
|
||
|
'convolve_min': 530000,
|
||
|
'WINDOW_SIZE': 240,
|
||
![]()
7 years ago
|
'conv_del_min': 54000,
|
||
|
'conv_del_max': 55000,
|
||
7 years ago
|
}
|
||
|
|
||
![]()
7 years ago
|
def do_fit(self, dataframe: pd.DataFrame, segments: list) -> None:
|
||
7 years ago
|
data = dataframe['value']
|
||
|
confidences = []
|
||
|
convolve_list = []
|
||
![]()
7 years ago
|
patterns_list = []
|
||
7 years ago
|
for segment in segments:
|
||
|
if segment['labeled']:
|
||
7 years ago
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
|
||
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
|
||
7 years ago
|
segment_data = data[segment_from_index: segment_to_index + 1]
|
||
7 years ago
|
if len(segment_data) == 0:
|
||
|
continue
|
||
7 years ago
|
segment_min = min(segment_data)
|
||
|
segment_max = max(segment_data)
|
||
|
confidences.append(0.2 * (segment_max - segment_min))
|
||
![]()
7 years ago
|
segment_max_index = segment_data.idxmax()
|
||
7 years ago
|
self.ipeaks.append(segment_max_index)
|
||
![]()
7 years ago
|
labeled_peak = data[segment_max_index - self.state['WINDOW_SIZE']: segment_max_index + self.state['WINDOW_SIZE'] + 1]
|
||
![]()
7 years ago
|
labeled_peak = labeled_peak - min(labeled_peak)
|
||
![]()
7 years ago
|
patterns_list.append(labeled_peak)
|
||
|
|
||
|
self.model_peak = utils.get_av_model(patterns_list)
|
||
![]()
7 years ago
|
for n in range(len(segments)): #labeled segments
|
||
![]()
7 years ago
|
labeled_peak = data[self.ipeaks[n] - self.state['WINDOW_SIZE']: self.ipeaks[n] + self.state['WINDOW_SIZE'] + 1]
|
||
|
labeled_peak = labeled_peak - min(labeled_peak)
|
||
|
auto_convolve = scipy.signal.fftconvolve(labeled_peak, labeled_peak)
|
||
|
convolve_peak = scipy.signal.fftconvolve(labeled_peak, self.model_peak)
|
||
|
convolve_list.append(max(auto_convolve))
|
||
|
convolve_list.append(max(convolve_peak))
|
||
![]()
7 years ago
|
|
||
|
del_conv_list = []
|
||
|
for segment in segments:
|
||
|
if segment['deleted']:
|
||
|
segment_from_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['from'], unit='ms'))
|
||
|
segment_to_index = utils.timestamp_to_index(dataframe, pd.to_datetime(segment['to'], unit='ms'))
|
||
|
segment_data = data[segment_from_index: segment_to_index + 1]
|
||
|
if len(segment_data) == 0:
|
||
|
continue
|
||
|
del_max_index = segment_data.idxmax()
|
||
|
deleted_peak = data[del_max_index - self.state['WINDOW_SIZE']: del_max_index + self.state['WINDOW_SIZE'] + 1]
|
||
|
deleted_peak = deleted_peak - min(deleted_peak)
|
||
|
del_conv_peak = scipy.signal.fftconvolve(deleted_peak, self.model_peak)
|
||
|
del_conv_list.append(max(del_conv_peak))
|
||
7 years ago
|
|
||
|
if len(confidences) > 0:
|
||
|
self.state['confidence'] = float(min(confidences))
|
||
|
else:
|
||
|
self.state['confidence'] = 1.5
|
||
|
|
||
|
if len(convolve_list) > 0:
|
||
|
self.state['convolve_max'] = float(max(convolve_list))
|
||
|
else:
|
||
![]()
7 years ago
|
self.state['convolve_max'] = self.state['WINDOW_SIZE']
|
||
7 years ago
|
|
||
![]()
7 years ago
|
if len(convolve_list) > 0:
|
||
|
self.state['convolve_min'] = float(min(convolve_list))
|
||
|
else:
|
||
|
self.state['convolve_min'] = self.state['WINDOW_SIZE']
|
||
![]()
7 years ago
|
|
||
|
if len(del_conv_list) > 0:
|
||
|
self.state['conv_del_min'] = float(min(del_conv_list))
|
||
|
else:
|
||
|
self.state['conv_del_min'] = self.state['WINDOW_SIZE']
|
||
|
|
||
|
if len(del_conv_list) > 0:
|
||
|
self.state['conv_del_max'] = float(max(del_conv_list))
|
||
|
else:
|
||
|
self.state['conv_del_max'] = self.state['WINDOW_SIZE']
|
||
7 years ago
|
|
||
|
def do_predict(self, dataframe: pd.DataFrame):
|
||
|
data = dataframe['value']
|
||
![]()
7 years ago
|
window_size = int(len(data)/SMOOTHING_COEFF) #test ws on flat data
|
||
7 years ago
|
all_maxs = argrelextrema(np.array(data), np.greater)[0]
|
||
7 years ago
|
|
||
|
extrema_list = []
|
||
![]()
7 years ago
|
for i in utils.exponential_smoothing(data + self.state['confidence'], EXP_SMOOTHING_FACTOR):
|
||
7 years ago
|
extrema_list.append(i)
|
||
|
|
||
|
segments = []
|
||
|
for i in all_maxs:
|
||
7 years ago
|
if data[i] > extrema_list[i]:
|
||
7 years ago
|
segments.append(i)
|
||
7 years ago
|
|
||
![]()
7 years ago
|
return self.__filter_prediction(segments, data)
|
||
7 years ago
|
|
||
7 years ago
|
def __filter_prediction(self, segments: list, data: list) -> list:
|
||
7 years ago
|
delete_list = []
|
||
![]()
7 years ago
|
variance_error = self.state['WINDOW_SIZE']
|
||
|
close_patterns = utils.close_filtering(segments, variance_error)
|
||
|
segments = utils.best_pat(close_patterns, data, 'max')
|
||
|
|
||
7 years ago
|
if len(segments) == 0 or len(self.ipeaks) == 0:
|
||
7 years ago
|
return []
|
||
![]()
7 years ago
|
pattern_data = self.model_peak
|
||
7 years ago
|
for segment in segments:
|
||
![]()
7 years ago
|
if segment > self.state['WINDOW_SIZE']:
|
||
![]()
7 years ago
|
convol_data = data[segment - self.state['WINDOW_SIZE']: segment + self.state['WINDOW_SIZE'] + 1]
|
||
![]()
7 years ago
|
convol_data = convol_data - min(convol_data)
|
||
![]()
7 years ago
|
conv = scipy.signal.fftconvolve(convol_data, pattern_data)
|
||
![]()
7 years ago
|
if max(conv) > self.state['convolve_max'] * 1.05 or max(conv) < self.state['convolve_min'] * 0.95:
|
||
7 years ago
|
delete_list.append(segment)
|
||
![]()
7 years ago
|
elif max(conv) < self.state['conv_del_max'] * 1.02 and max(conv) > self.state['conv_del_min'] * 0.98:
|
||
![]()
7 years ago
|
delete_list.append(segment)
|
||
7 years ago
|
else:
|
||
|
delete_list.append(segment)
|
||
![]()
7 years ago
|
for item in delete_list:
|
||
|
segments.remove(item)
|
||
7 years ago
|
|
||
7 years ago
|
return set(segments)
|