You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
4.4 KiB
122 lines
4.4 KiB
import sys |
|
ANALYTICS_PATH = '../analytics' |
|
TESTS_PATH = '../tests' |
|
sys.path.extend([ANALYTICS_PATH, TESTS_PATH]) |
|
|
|
import pandas as pd |
|
import numpy as np |
|
import utils |
|
import test_dataset |
|
from analytic_types.segment import Segment |
|
from detectors import pattern_detector, threshold_detector, anomaly_detector |
|
|
|
# TODO: get_dataset |
|
# TODO: get_segment |
|
PEAK_DATASETS = [] |
|
# dataset with 3 peaks |
|
TEST_DATA = test_dataset.create_dataframe([0, 0, 3, 5, 7, 5, 3, 0, 0, 1, 0, 1, 4, 6, 8, 6, 4, 1, 0, 0, 0, 1, 0, 3, 5, 7, 5, 3, 0, 1, 1]) |
|
# TODO: more convenient way to specify labeled segments |
|
POSITIVE_SEGMENTS = [{'from': 1523889000001, 'to': 1523889000007}, {'from': 1523889000022, 'to': 1523889000028}] |
|
NEGATIVE_SEGMENTS = [{'from': 1523889000011, 'to': 1523889000017}] |
|
|
|
class TesterSegment(): |
|
|
|
def __init__(self, start: int, end: int, labeled: bool): |
|
self.start = start |
|
self.end = end |
|
self.labeled = labeled |
|
|
|
def get_segment(self): |
|
return { |
|
'_id': 'q', |
|
'analyticUnitId': 'q', |
|
'from': self.start, |
|
'to': self.end, |
|
'labeled': self.labeled, |
|
'deleted': not self.labeled |
|
} |
|
|
|
class Metric(): |
|
|
|
def __init__(self, expected_result, detector_result): |
|
self.expected_result = expected_result |
|
self.detector_result = detector_result['segments'] |
|
|
|
def get_amount(self): |
|
return len(self.detector_result) / len(self.expected_result) |
|
|
|
def get_accuracy(self): |
|
correct_segment = 0 |
|
invalid_segment = 0 |
|
for segment in self.detector_result: |
|
current_cs = correct_segment |
|
for pattern in self.expected_result: |
|
if pattern['from'] <= segment['from'] and pattern['to'] >= segment['to']: |
|
correct_segment += 1 |
|
break |
|
if correct_segment == current_cs: |
|
invalid_segment += 1 |
|
non_detected = len(self.expected_result) - correct_segment |
|
return (correct_segment, invalid_segment, non_detected) |
|
|
|
class ModelData(): |
|
|
|
def __init__(self, frame: pd.DataFrame, positive_segments, negative_segments, model_type: str): |
|
self.frame = frame |
|
self.positive_segments = positive_segments |
|
self.negative_segments = negative_segments |
|
self.model_type = model_type |
|
|
|
def get_segments_for_detection(self, positive_amount, negative_amount): |
|
segments = [] |
|
for idx, bounds in enumerate(self.positive_segments): |
|
if idx >= positive_amount: |
|
break |
|
segments.append(TesterSegment(bounds['from'], bounds['to'], True).get_segment()) |
|
|
|
for idx, bounds in enumerate(self.negative_segments): |
|
if idx >= negative_amount: |
|
break |
|
segments.append(TesterSegment(bounds['from'], bounds['to'], False).get_segment()) |
|
|
|
return segments |
|
|
|
def get_all_correct_segments(self): |
|
return self.positive_segments |
|
|
|
PEAK_DATA_1 = ModelData(TEST_DATA, POSITIVE_SEGMENTS, NEGATIVE_SEGMENTS, 'peak') |
|
PEAK_DATASETS.append(PEAK_DATA_1) |
|
|
|
def main(model_type: str) -> None: |
|
table_metric = [] |
|
if model_type == 'peak': |
|
for data in PEAK_DATASETS: |
|
dataset = data.frame |
|
segments = data.get_segments_for_detection(1, 0) |
|
segments = [Segment.from_json(segment) for segment in segments] |
|
detector = pattern_detector.PatternDetector('PEAK', 'test_id') |
|
training_result = detector.train(dataset, segments, {}) |
|
cache = training_result['cache'] |
|
detect_result = detector.detect(dataset, cache) |
|
detect_result = detect_result.to_json() |
|
peak_metric = Metric(data.get_all_correct_segments(), detect_result) |
|
table_metric.append((peak_metric.get_amount(), peak_metric.get_accuracy())) |
|
return table_metric |
|
|
|
if __name__ == '__main__': |
|
''' |
|
This tool applies the model on datasets and verifies that the detection result corresponds to the correct values. |
|
sys.argv[1] expects one of the models name -> see correct_name |
|
''' |
|
# TODO: use enum |
|
correct_name = ['peak', 'trough', 'jump', 'drop', 'general'] |
|
if len(sys.argv) < 2: |
|
print('Enter one of models name: {}'.format(correct_name)) |
|
sys.exit(1) |
|
model_type = str(sys.argv[1]).lower() |
|
if model_type in correct_name: |
|
print(main(model_type)) |
|
else: |
|
print('Enter one of models name: {}'.format(correct_name)) |
|
|
|
|
|
|