You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

103 lines
4.2 KiB

from typing import Dict
import logging as log
import traceback
from concurrent.futures import Executor, ThreadPoolExecutor
from analytic_unit_worker import AnalyticUnitWorker
from analytic_types import AnalyticUnitId, ModelCache
from analytic_types.segment import Segment
import detectors
logger = log.getLogger('AnalyticUnitManager')
def get_detector_by_type(
detector_type: str, analytic_unit_type: str, analytic_unit_id: AnalyticUnitId
) -> detectors.Detector:
if detector_type == 'pattern':
return detectors.PatternDetector(analytic_unit_type, analytic_unit_id)
elif detector_type == 'threshold':
return detectors.ThresholdDetector(analytic_unit_id)
elif detector_type == 'anomaly':
return detectors.AnomalyDetector(analytic_unit_id)
raise ValueError('Unknown detector type "%s"' % detector_type)
class AnalyticUnitManager:
def __init__(self):
self.analytic_workers: Dict[AnalyticUnitId, AnalyticUnitWorker] = dict()
self.workers_executor = ThreadPoolExecutor()
def __ensure_worker(
self,
analytic_unit_id: AnalyticUnitId,
detector_type: str,
analytic_unit_type: str
) -> AnalyticUnitWorker:
if analytic_unit_id in self.analytic_workers:
# TODO: check that type is the same
return self.analytic_workers[analytic_unit_id]
detector = get_detector_by_type(detector_type, analytic_unit_type, analytic_unit_id)
worker = AnalyticUnitWorker(analytic_unit_id, detector, self.workers_executor)
self.analytic_workers[analytic_unit_id] = worker
return worker
async def __handle_analytic_task(self, task: object) -> dict:
"""
returns payload or None
"""
analytic_unit_id: AnalyticUnitId = task['analyticUnitId']
log.debug('Analytics get task with type: {} for unit: {}'.format(task['type'], analytic_unit_id))
if task['type'] == 'CANCEL':
if analytic_unit_id in self.analytic_workers:
self.analytic_workers[analytic_unit_id].cancel()
return
payload = task['payload']
worker = self.__ensure_worker(analytic_unit_id, payload['detector'], payload['analyticUnitType'])
data = payload.get('data')
if task['type'] == 'PUSH':
# TODO: do it a better way
res = await worker.consume_data(data, payload['cache'])
if res:
res.update({ 'analyticUnitId': analytic_unit_id })
return res
elif task['type'] == 'LEARN':
if 'segments' in payload:
segments = payload['segments']
segments = [Segment.from_json(segment) for segment in segments]
return await worker.do_train(segments, data, payload['cache'])
elif 'threshold' in payload:
return await worker.do_train(payload['threshold'], data, payload['cache'])
elif 'anomaly' in payload:
return await worker.do_train(payload['anomaly'], data, payload['cache'])
else:
raise ValueError('No segments or threshold in LEARN payload')
elif task['type'] == 'DETECT':
return await worker.do_detect(data, payload['cache'])
elif task['type'] == 'PROCESS':
return await worker.process_data(data, payload['cache'])
raise ValueError('Unknown task type "%s"' % task['type'])
async def handle_analytic_task(self, task: object):
try:
log.debug('Start handle_analytic_task with analytic unit: {}'.format(task['analyticUnitId']))
result_payload = await self.__handle_analytic_task(task)
result_message = {
'status': 'SUCCESS',
'payload': result_payload
}
log.debug('End correctly handle_analytic_task with anatytic unit: {}'.format(task['analyticUnitId']))
return result_message
except Exception as e:
error_text = traceback.format_exc()
logger.error("handle_analytic_task Exception: '%s'" % error_text)
# TODO: move result to a class which renders to json for messaging to analytics
return {
'status': 'FAILED',
'error': repr(e)
}