You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
5.8 KiB
161 lines
5.8 KiB
import sys |
|
ANALYTICS_PATH = '../analytics' |
|
TESTS_PATH = '../tests' |
|
sys.path.extend([ANALYTICS_PATH, TESTS_PATH]) |
|
|
|
import asyncio |
|
from typing import List, Tuple |
|
|
|
from analytic_unit_manager import AnalyticUnitManager |
|
|
|
START_TIMESTAMP = 1523889000000 |
|
# TODO: get_dataset |
|
# TODO: get_segment |
|
|
|
# dataset with 3 peaks |
|
TEST_DATA = [0, 0, 3, 5, 7, 5, 3, 0, 0, 1, 0, 1, 4, 6, 8, 6, 4, 1, 0, 0, 0, 1, 0, 3, 5, 7, 5, 3, 0, 1, 1] |
|
# TODO: more convenient way to specify labeled segments |
|
POSITIVE_SEGMENTS = [{ 'from': 1, 'to': 7 }, { 'from': 22, 'to': 28 }] |
|
NEGATIVE_SEGMENTS = [{ 'from': 11, 'to': 17 }] |
|
DATA_MODELS = [ |
|
{ |
|
'type': 'peak', |
|
'serie': TEST_DATA, |
|
'segments': { |
|
'positive': POSITIVE_SEGMENTS, |
|
'negative': NEGATIVE_SEGMENTS |
|
} |
|
} |
|
] |
|
|
|
class TesterSegment(): |
|
|
|
def __init__(self, start: int, end: int, labeled: bool): |
|
self.start = start |
|
self.end = end |
|
self.labeled = labeled |
|
|
|
def get_segment(self): |
|
return { |
|
'_id': 'q', |
|
'analyticUnitId': 'q', |
|
'from': START_TIMESTAMP + self.start, |
|
'to': START_TIMESTAMP + self.end, |
|
'labeled': self.labeled, |
|
'deleted': not self.labeled |
|
} |
|
|
|
class Metric(): |
|
|
|
def __init__(self, expected_result, detector_result): |
|
self.expected_result = expected_result |
|
self.detector_result = detector_result['segments'] |
|
|
|
def get_amount(self): |
|
return len(self.detector_result) / len(self.expected_result) |
|
|
|
def get_accuracy(self): |
|
correct_segment = 0 |
|
invalid_segment = 0 |
|
for segment in self.detector_result: |
|
current_cs = correct_segment |
|
for pattern in self.expected_result: |
|
if pattern['from'] <= segment['from'] and pattern['to'] >= segment['to']: |
|
correct_segment += 1 |
|
break |
|
if correct_segment == current_cs: |
|
invalid_segment += 1 |
|
non_detected = len(self.expected_result) - correct_segment |
|
return (correct_segment, invalid_segment, non_detected) |
|
|
|
class TestDataModel(): |
|
|
|
def __init__(self, data_values: List[float], positive_segments: List[dict], negative_segments: List[dict], model_type: str): |
|
self.data_values = data_values |
|
self.positive_segments = positive_segments |
|
self.negative_segments = negative_segments |
|
self.model_type = model_type |
|
|
|
def get_segments_for_detection(self, positive_amount: int, negative_amount: int): |
|
positive_segments = [segment for idx, segment in enumerate(self.get_positive_segments()) if idx < positive_amount] |
|
negative_segments = [segment for idx, segment in enumerate(self.get_negative_segments()) if idx < negative_amount] |
|
return positive_segments + negative_segments |
|
|
|
def get_formated_segments(self, segments: List[dict], positive: bool): |
|
# TODO: add enum |
|
return [TesterSegment(segment['from'], segment['to'], positive).get_segment() for segment in segments] |
|
|
|
def get_positive_segments(self): |
|
return self.get_formated_segments(self.positive_segments, True) |
|
|
|
def get_negative_segments(self): |
|
return self.get_formated_segments(self.negative_segments, False) |
|
|
|
def get_timestamp_values_list(self) -> List[Tuple[int, float]]: |
|
data_timestamp_list = [START_TIMESTAMP + i for i in range(len(self.data_values))] |
|
return list(zip(data_timestamp_list, self.data_values)) |
|
|
|
def get_task(self, task_type: str, cache = None) -> dict: |
|
data = self.get_timestamp_values_list() |
|
start_timestamp, end_timestamp = data[0][0], data[-1][0] |
|
analytic_unit_type = self.model_type.upper() |
|
task = { |
|
'analyticUnitId': 'testUnitId', |
|
'type': task_type, |
|
'payload': { |
|
'data': data, |
|
'from': start_timestamp, |
|
'to': end_timestamp, |
|
'analyticUnitType': analytic_unit_type, |
|
'detector': 'pattern', |
|
'cache': cache |
|
}, |
|
'_id': 'testId' |
|
} |
|
# TODO: enum for task_type |
|
if(task_type == 'LEARN'): |
|
segments = self.get_segments_for_detection(1, 0) |
|
task['payload']['segments'] = segments |
|
return task |
|
|
|
PEAK_DATA_MODELS = list(map( |
|
lambda data_model: TestDataModel( |
|
data_model['serie'], |
|
data_model['segments']['positive'], |
|
data_model['segments']['negative'], |
|
data_model['type'] |
|
), |
|
DATA_MODELS |
|
)) |
|
|
|
async def main(model_type: str) -> None: |
|
table_metric = [] |
|
if model_type == 'peak': |
|
for data_model in PEAK_DATA_MODELS: |
|
manager = AnalyticUnitManager() |
|
learning_task = data_model.get_task('LEARN') |
|
learning_result = await manager.handle_analytic_task(learning_task) |
|
detect_task = data_model.get_task('DETECT', learning_result['payload']['cache']) |
|
detect_result = await manager.handle_analytic_task(detect_task) |
|
peak_metric = Metric(data_model.get_positive_segments(), detect_result['payload']) |
|
table_metric.append((peak_metric.get_amount(), peak_metric.get_accuracy())) |
|
return table_metric |
|
|
|
if __name__ == '__main__': |
|
''' |
|
This tool applies the model on datasets and verifies that the detection result corresponds to the correct values. |
|
sys.argv[1] expects one of the models name -> see correct_name |
|
''' |
|
# TODO: use enum |
|
correct_name = ['peak', 'trough', 'jump', 'drop', 'general'] |
|
if len(sys.argv) < 2: |
|
print('Enter one of models name: {}'.format(correct_name)) |
|
sys.exit(1) |
|
model_type = str(sys.argv[1]).lower() |
|
loop = asyncio.get_event_loop() |
|
if model_type in correct_name: |
|
result = loop.run_until_complete(main(model_type)) |
|
print(result) |
|
else: |
|
print('Enter one of models name: {}'.format(correct_name)) |
|
|
|
|