import sys ANALYTICS_PATH = '../analytics' TESTS_PATH = '../tests' sys.path.extend([ANALYTICS_PATH, TESTS_PATH]) import asyncio from typing import List, Tuple from analytic_unit_manager import AnalyticUnitManager START_TIMESTAMP = 1523889000000 # TODO: get_dataset # TODO: get_segment # dataset with 3 peaks TEST_DATA = [0, 0, 3, 5, 7, 5, 3, 0, 0, 1, 0, 1, 4, 6, 8, 6, 4, 1, 0, 0, 0, 1, 0, 3, 5, 7, 5, 3, 0, 1, 1] # TODO: more convenient way to specify labeled segments POSITIVE_SEGMENTS = [{ 'from': 1, 'to': 7 }, { 'from': 22, 'to': 28 }] NEGATIVE_SEGMENTS = [{ 'from': 11, 'to': 17 }] DATA_MODELS = [ { 'type': 'peak', 'serie': TEST_DATA, 'segments': { 'positive': POSITIVE_SEGMENTS, 'negative': NEGATIVE_SEGMENTS } } ] class TesterSegment(): def __init__(self, start: int, end: int, labeled: bool): self.start = start self.end = end self.labeled = labeled def get_segment(self): return { '_id': 'q', 'analyticUnitId': 'q', 'from': START_TIMESTAMP + self.start, 'to': START_TIMESTAMP + self.end, 'labeled': self.labeled, 'deleted': not self.labeled } class Metric(): def __init__(self, expected_result, detector_result): self.expected_result = expected_result self.detector_result = detector_result['segments'] def get_amount(self): return len(self.detector_result) / len(self.expected_result) def get_accuracy(self): correct_segment = 0 invalid_segment = 0 for segment in self.detector_result: current_cs = correct_segment for pattern in self.expected_result: if pattern['from'] <= segment['from'] and pattern['to'] >= segment['to']: correct_segment += 1 break if correct_segment == current_cs: invalid_segment += 1 non_detected = len(self.expected_result) - correct_segment return (correct_segment, invalid_segment, non_detected) class TestDataModel(): def __init__(self, data_values: List[float], positive_segments: List[dict], negative_segments: List[dict], model_type: str): self.data_values = data_values self.positive_segments = positive_segments self.negative_segments = negative_segments self.model_type = model_type def get_segments_for_detection(self, positive_amount: int, negative_amount: int): positive_segments = [segment for idx, segment in enumerate(self.get_positive_segments()) if idx < positive_amount] negative_segments = [segment for idx, segment in enumerate(self.get_negative_segments()) if idx < negative_amount] return positive_segments + negative_segments def get_formated_segments(self, segments: List[dict], positive: bool): # TODO: add enum return [TesterSegment(segment['from'], segment['to'], positive).get_segment() for segment in segments] def get_positive_segments(self): return self.get_formated_segments(self.positive_segments, True) def get_negative_segments(self): return self.get_formated_segments(self.negative_segments, False) def get_timestamp_values_list(self) -> List[Tuple[int, float]]: data_timestamp_list = [START_TIMESTAMP + i for i in range(len(self.data_values))] return list(zip(data_timestamp_list, self.data_values)) def get_task(self, task_type: str, cache = None) -> dict: data = self.get_timestamp_values_list() start_timestamp, end_timestamp = data[0][0], data[-1][0] analytic_unit_type = self.model_type.upper() task = { 'analyticUnitId': 'testUnitId', 'type': task_type, 'payload': { 'data': data, 'from': start_timestamp, 'to': end_timestamp, 'analyticUnitType': analytic_unit_type, 'detector': 'pattern', 'cache': cache }, '_id': 'testId' } # TODO: enum for task_type if(task_type == 'LEARN'): segments = self.get_segments_for_detection(1, 0) task['payload']['segments'] = segments return task PEAK_DATA_MODELS = list(map( lambda data_model: TestDataModel( data_model['serie'], data_model['segments']['positive'], data_model['segments']['negative'], data_model['type'] ) )) async def main(model_type: str) -> None: table_metric = [] if model_type == 'peak': for data_model in PEAK_DATA_MODELS: manager = AnalyticUnitManager() learning_task = data_model.get_task('LEARN') learning_result = await manager.handle_analytic_task(learning_task) detect_task = data_model.get_task('DETECT', learning_result['payload']['cache']) detect_result = await manager.handle_analytic_task(detect_task) peak_metric = Metric(data_model.get_positive_segments(), detect_result['payload']) table_metric.append((peak_metric.get_amount(), peak_metric.get_accuracy())) return table_metric if __name__ == '__main__': ''' This tool applies the model on datasets and verifies that the detection result corresponds to the correct values. sys.argv[1] expects one of the models name -> see correct_name ''' # TODO: use enum correct_name = ['peak', 'trough', 'jump', 'drop', 'general'] if len(sys.argv) < 2: print('Enter one of models name: {}'.format(correct_name)) sys.exit(1) model_type = str(sys.argv[1]).lower() loop = asyncio.get_event_loop() if model_type in correct_name: result = loop.run_until_complete(main(model_type)) print(result) else: print('Enter one of models name: {}'.format(correct_name))