You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

360 lines
14 KiB

5 years ago
from analytic_types.segment import Segment
import utils
import unittest
import numpy as np
import pandas as pd
import math
import random
RELATIVE_TOLERANCE = 1e-1
class TestUtils(unittest.TestCase):
#example test for test's workflow purposes
def test_segment_parsion(self):
self.assertTrue(True)
def test_confidence_all_normal_value(self):
segment = [1, 2, 0, 6, 8, 5, 3]
utils_result = utils.find_confidence(segment)[0]
result = 4.0
self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE))
def test_confidence_all_nan_value(self):
segment = [np.nan, np.nan, np.nan, np.nan]
self.assertEqual(utils.find_confidence(segment)[0], 0)
def test_confidence_with_nan_value(self):
data = [np.nan, np.nan, 0, 8]
utils_result = utils.find_confidence(data)[0]
result = 4.0
self.assertTrue(math.isclose(utils_result, result, rel_tol = RELATIVE_TOLERANCE))
def test_interval_all_normal_value(self):
data = [1, 2, 1, 2, 4, 1, 2, 4, 5, 6]
data = pd.Series(data)
center = 4
window_size = 2
result = [1, 2, 4, 1, 2]
self.assertEqual(list(utils.get_interval(data, center, window_size)), result)
def test_interval_wrong_ws(self):
data = [1, 2, 4, 1, 2, 4]
data = pd.Series(data)
center = 3
window_size = 6
result = [1, 2, 4, 1, 2, 4]
self.assertEqual(list(utils.get_interval(data, center, window_size)), result)
def test_subtract_min_without_nan(self):
segment = [1, 2, 4, 1, 2, 4]
segment = pd.Series(segment)
result = [0, 1, 3, 0, 1, 3]
utils_result = list(utils.subtract_min_without_nan(segment))
self.assertEqual(utils_result, result)
def test_subtract_min_with_nan(self):
segment = [np.nan, 2, 4, 1, 2, 4]
segment = pd.Series(segment)
result = [2, 4, 1, 2, 4]
utils_result = list(utils.subtract_min_without_nan(segment)[1:])
self.assertEqual(utils_result, result)
def test_get_convolve(self):
data = [1, 2, 3, 2, 2, 0, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 3, 2, 0]
data = pd.Series(data)
pattern_index = [2, 8, 15]
window_size = 2
av_model = [1, 2, 3, 2, 1]
result = []
self.assertNotEqual(utils.get_convolve(pattern_index, av_model, data, window_size), result)
def test_get_convolve_with_nan(self):
data = [1, 2, 3, 2, np.nan, 0, 2, 3, 4, np.nan, 2, 1, 1, 2, 3, 4, 3, np.nan, 0]
data = pd.Series(data)
pattern_index = [2, 8, 15]
window_size = 2
av_model = [1, 2, 3, 2, 1]
result = utils.get_convolve(pattern_index, av_model, data, window_size)
for val in result:
self.assertFalse(np.isnan(val))
def test_get_convolve_empty_data(self):
data = []
pattern_index = []
window_size = 2
window_size_zero = 0
av_model = []
result = []
self.assertEqual(utils.get_convolve(pattern_index, av_model, data, window_size), result)
self.assertEqual(utils.get_convolve(pattern_index, av_model, data, window_size_zero), result)
def test_find_jump_parameters_center(self):
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
segment = pd.Series(segment)
jump_center = [10, 11]
self.assertIn(utils.find_pattern_center(segment, 0, 'jump'), jump_center)
def test_find_jump_parameters_height(self):
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
segment = pd.Series(segment)
jump_height = [3.5, 4]
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'jump')[0], jump_height[0])
self.assertLessEqual(utils.find_parameters(segment, 0, 'jump')[0], jump_height[1])
def test_find_jump_parameters_length(self):
segment = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
segment = pd.Series(segment)
jump_length = 2
self.assertEqual(utils.find_parameters(segment, 0, 'jump')[1], jump_length)
def test_find_drop_parameters_center(self):
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
segment = pd.Series(segment)
drop_center = [14, 15, 16]
self.assertIn(utils.find_pattern_center(segment, 0, 'drop'), drop_center)
def test_find_drop_parameters_height(self):
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
segment = pd.Series(segment)
drop_height = [3.5, 4]
self.assertGreaterEqual(utils.find_parameters(segment, 0, 'drop')[0], drop_height[0])
self.assertLessEqual(utils.find_parameters(segment, 0, 'drop')[0], drop_height[1])
def test_find_drop_parameters_length(self):
segment = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
segment = pd.Series(segment)
drop_length = 2
self.assertEqual(utils.find_parameters(segment, 0, 'drop')[1], drop_length)
def test_get_av_model_empty_data(self):
patterns_list = []
result = []
self.assertEqual(utils.get_av_model(patterns_list), result)
def test_get_av_model_normal_data(self):
patterns_list = [[1, 1, 1], [2, 2, 2],[3,3,3]]
result = [2.0, 2.0, 2.0]
self.assertEqual(utils.get_av_model(patterns_list), result)
def test_get_distribution_density(self):
segment = [1, 1, 1, 3, 5, 5, 5]
segment = pd.Series(segment)
result = (3, 5, 1)
self.assertEqual(utils.get_distribution_density(segment), result)
def test_get_distribution_density_right(self):
data = [1.0, 5.0, 5.0, 4.0]
data = pd.Series(data)
median = 3.0
max_line = 5.0
min_line = 1.0
utils_result = utils.get_distribution_density(data)
self.assertTrue(math.isclose(utils_result[0], median, rel_tol = RELATIVE_TOLERANCE))
self.assertTrue(math.isclose(utils_result[1], max_line, rel_tol = RELATIVE_TOLERANCE))
self.assertTrue(math.isclose(utils_result[2], min_line, rel_tol = RELATIVE_TOLERANCE))
def test_get_distribution_density_left(self):
data = [1.0, 1.0, 2.0, 1.0, 5.0]
data = pd.Series(data)
median = 3.0
max_line = 5.0
min_line = 1.0
utils_result = utils.get_distribution_density(data)
self.assertTrue(math.isclose(utils_result[0], median, rel_tol = RELATIVE_TOLERANCE))
self.assertTrue(math.isclose(utils_result[1], max_line, rel_tol = RELATIVE_TOLERANCE))
self.assertTrue(math.isclose(utils_result[2], min_line, rel_tol = RELATIVE_TOLERANCE))
def test_get_distribution_density_short_data(self):
data = [1.0, 5.0]
data = pd.Series(data)
segment = [1.0]
segment = pd.Series(segment)
utils_result_data = utils.get_distribution_density(data)
utils_result_segment = utils.get_distribution_density(segment)
self.assertEqual(len(utils_result_data), 3)
self.assertEqual(utils_result_segment, (0, 0, 0))
def test_get_distribution_density_with_nans(self):
segment = [np.NaN, 1, 1, 1, np.NaN, 3, 5, 5, 5, np.NaN]
segment = pd.Series(segment)
result = (3, 5, 1)
self.assertEqual(utils.get_distribution_density(segment), result)
def test_find_pattern_jump_center(self):
data = [1.0, 1.0, 1.0, 5.0, 5.0, 5.0]
data = pd.Series(data)
median = 3.0
result = 3
self.assertEqual(result, utils.find_pattern_center(data, 0, 'jump'))
def test_get_convolve_wrong_index(self):
data = [1.0, 5.0, 2.0, 1.0, 6.0, 2.0]
data = pd.Series(data)
segemnts = [1, 11]
av_model = [0.0, 4.0, 0.0]
window_size = 1
try:
utils.get_convolve(segemnts, av_model, data, window_size)
except ValueError:
self.fail('Method get_convolve raised unexpectedly')
def test_get_av_model_for_different_length(self):
patterns_list = [[1.0, 1.0, 2.0], [4.0, 4.0], [2.0, 2.0, 2.0], [3.0, 3.0], []]
try:
utils.get_av_model(patterns_list)
except ValueError:
self.fail('Method get_convolve raised unexpectedly')
def test_find_nan_indexes(self):
data = [1, 1, 1, 0, 0, np.nan, None, []]
data = pd.Series(data)
result = [5, 6]
self.assertEqual(utils.find_nan_indexes(data), result)
def test_find_nan_indexes_normal_values(self):
data = [1, 1, 1, 0, 0, 0, 1, 1]
data = pd.Series(data)
result = []
self.assertEqual(utils.find_nan_indexes(data), result)
def test_find_nan_indexes_empty_values(self):
data = []
result = []
self.assertEqual(utils.find_nan_indexes(data), result)
def test_create_correlation_data(self):
data = [random.randint(10, 999) for _ in range(10000)]
data = pd.Series(data)
pattern_model = [100, 200, 500, 300, 100]
ws = 2
result = 6000
corr_data = utils.get_correlation_gen(data, ws, pattern_model)
corr_data = list(corr_data)
self.assertGreaterEqual(len(corr_data), result)
def test_inverse_segment(self):
data = pd.Series([1,2,3,4,3,2,1])
result = pd.Series([3,2,1,0,1,2,3])
utils_result = utils.inverse_segment(data)
for ind, val in enumerate(utils_result):
self.assertEqual(val, result[ind])
def test_get_end_of_segment_equal(self):
data = pd.Series([5,4,3,2,1,0,0,0])
result_list = [4, 5, 6]
self.assertIn(utils.get_end_of_segment(data, False), result_list)
def test_get_end_of_segment_greater(self):
data = pd.Series([5,4,3,2,1,0,1,2,3])
result_list = [4, 5, 6]
self.assertIn(utils.get_end_of_segment(data, False), result_list)
def test_get_borders_of_peaks(self):
data = pd.Series([1,0,1,2,3,2,1,0,0,1,2,3,4,3,2,2,1,0,1,2,3,4,5,3,2,1,0])
pattern_center = [4, 12, 22]
ws = 3
confidence = 1.5
result = [(1, 7), (9, 15), (19, 25)]
self.assertEqual(utils.get_borders_of_peaks(pattern_center, data, ws, confidence), result)
def test_get_borders_of_peaks_for_trough(self):
data = pd.Series([4,4,5,5,3,1,3,5,5,6,3,2])
pattern_center = [5]
ws = 5
confidence = 3
result = [(3, 7)]
self.assertEqual(utils.get_borders_of_peaks(pattern_center, data, ws, confidence, inverse = True), result)
def test_get_start_and_end_of_segments(self):
segments = [[1, 2, 3, 4], [5, 6, 7], [8], [], [12, 12]]
result = [[1, 4], [5, 7], [8, 8], [12, 12]]
utils_result = utils.get_start_and_end_of_segments(segments)
for got, expected in zip(utils_result, result):
self.assertEqual(got, expected)
def test_get_start_and_end_of_segments_empty(self):
segments = []
result = []
utils_result = utils.get_start_and_end_of_segments(segments)
self.assertEqual(result, utils_result)
def test_merge_intersecting_segments(self):
test_cases = [
{
'index': [Segment(10, 20), Segment(30, 40)],
'result': [[10, 20], [30, 40]],
'step': 0,
},
{
'index': [Segment(10, 20), Segment(13, 23), Segment(15, 17), Segment(20, 40)],
'result': [[10, 40]],
'step': 0,
},
{
'index': [],
'result': [],
'step': 0,
},
{
'index': [Segment(10, 20)],
'result': [[10, 20]],
'step': 0,
},
{
'index': [Segment(10, 20), Segment(13, 23), Segment(25, 30), Segment(35, 40)],
'result': [[10, 23], [25, 30], [35, 40]],
'step': 0,
},
{
'index': [Segment(10, 50), Segment(5, 40), Segment(15, 25), Segment(6, 50)],
'result': [[5, 50]],
'step': 0,
},
{
'index': [Segment(5, 10), Segment(10, 20), Segment(25, 50)],
'result': [[5, 20], [25, 50]],
'step': 0,
},
{
'index': [Segment(20, 40), Segment(10, 15), Segment(50, 60)],
'result': [[10, 15], [20, 40], [50, 60]],
'step': 0,
},
{
'index': [Segment(20, 40), Segment(10, 20), Segment(50, 60)],
'result': [[10, 40], [50, 60]],
'step': 0,
},
{
'index': [Segment(10, 10), Segment(20, 20), Segment(30, 30)],
'result': [[10, 30]],
'step': 10,
},
]
for case in test_cases:
utils_result = utils.merge_intersecting_segments(case['index'], case['step'])
for got, expected in zip(utils_result, case['result']):
self.assertEqual(got.from_timestamp, expected[0])
self.assertEqual(got.to_timestamp, expected[1])
def test_serialize(self):
segment_list = [Segment(100,200)]
serialize_list = utils.meta.SerializableList(segment_list)
meta_result = utils.meta.serialize(serialize_list)
expected_result = [{ 'from': 100, 'to': 200 }]
self.assertEqual(meta_result, expected_result)
def test_remove_duplicates_and_sort(self):
a1 = [1, 3, 5]
a2 = [8, 3, 6]
expected_result = [1, 3, 5, 6, 8]
utils_result = utils.remove_duplicates_and_sort(a1+a2)
self.assertEqual(utils_result, expected_result)
self.assertEqual([], [])
if __name__ == '__main__':
unittest.main()